期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
词向量聚类加权TextRank的关键词抽取 被引量:60
1
作者 夏天 《数据分析与知识发现》 CSSCI CSCD 2017年第2期28-34,共7页
【目的】将维基百科蕴涵的世界知识以词向量方式融入TextRank模型,改进单文档关键词抽取效果。【方法】利用Word2Vec模型基于维基百科中文数据,生成词向量模型,对TextRank词图节点的词向量进行聚类以调整簇内节点的投票重要性,结合节点... 【目的】将维基百科蕴涵的世界知识以词向量方式融入TextRank模型,改进单文档关键词抽取效果。【方法】利用Word2Vec模型基于维基百科中文数据,生成词向量模型,对TextRank词图节点的词向量进行聚类以调整簇内节点的投票重要性,结合节点的覆盖和位置因素,计算节点之间的随机跳转概率,生成转移矩阵,最终通过迭代计算获得节点的重要性得分,选取前TopN个词语生成关键词。【结果】当TopN≤7时,词向量聚类加权方法均优于对比方法;TopN=3时,F值取得最大值,比先前最优结果增量提升了3.374%;TopN>7时,结果与位置加权法相似。【局限】聚类分析使得计算开销变高。【结论】词向量聚类加权能够改善关键词抽取效果。 展开更多
关键词 关键词抽取 词向量 textrank word2vec
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部