Fish biology has been developed for more than 100 years,but some important breakthroughs have been made in the last decade.Early studies commonly concentrated on morphology,phylogenetics,development,growth,reproductio...Fish biology has been developed for more than 100 years,but some important breakthroughs have been made in the last decade.Early studies commonly concentrated on morphology,phylogenetics,development,growth,reproduction manipulation,and disease control.Recent studies have mostly focused on genetics,molecular biology,genomics,and genome biotechnologies,which have provided a solid foundation for enhancing aquaculture to ensure food security and improving aquatic environments to sustain ecosystem health.Here,we review research advances in five major areas:(1)biological innovations and genomic evolution of four significant fish lineages including non-teleost ray-finned fishes,northern hemisphere sticklebacks,East African cichlid fishes,and East Asian cyprinid fishes;(2)evolutionary fates and consequences of natural polyploid fishes;(3)biological consequences of fish domestication and selection;(4)development and innovation of fish breeding biotechnologies;and(5)applicable approaches and potential of fish genetic breeding biotechnologies.Moreover,five precision breeding biotechniques are examined and discussed in detail including gene editing for the introgression or removal of beneficial or detrimental alleles,use of sex-specific markers for the production of mono-sex populations,controllable primordial germ cell on-off strategy for producing sterile offspring,surrogate broodstock-based strategies to accelerate breeding,and genome incorporation and sexual reproduction regainbased approach to create synthetic polyploids.Based on these scientific and technological advances,we propose a blueprint for genetic improvement and new breed creation for aquaculture species and analyze the potential of these new breeding strategies for improving aquaculture seed industry and strengthening food security.展开更多
目的:筛选影响肝癌发生发展的关键基因.方法:运用跨种属肿瘤基因筛选策略比较不同种属的肝癌基因表达谱间的相似改变,选择5套不同种属的肝癌基因表达芯片分别通过基因组富集(gene set enrichment analysis,GSEA)以及对单套数据集单个基...目的:筛选影响肝癌发生发展的关键基因.方法:运用跨种属肿瘤基因筛选策略比较不同种属的肝癌基因表达谱间的相似改变,选择5套不同种属的肝癌基因表达芯片分别通过基因组富集(gene set enrichment analysis,GSEA)以及对单套数据集单个基因元分析(meta-analysis,Meta)的分析方法,筛选出在转录水平上影响肝癌的基因.结果:用GSEA方法分析,5组数据中所得通路对比,上调中皆有的通路为氨基糖核苷酸糖代谢、细胞周期、甲状腺癌;下调中皆有的通路为亚油酸代谢、花生四烯酸代谢.对单套数据集单个基因进行Meta分析,共筛出P<0.05的基因1708个.用DAVID和KEGG网站的分析工具发现这1708个差异基因中有720个基因能够在KEGG库中筛出,主要分布在细胞周期、卵母细胞减数分裂、DNA复制等通路.这两种分析方法得出的通路中,重叠性较高的主要为细胞周期通路.在细胞周期通路中差异性有统计学意义(P<0.05)的基因25个,文献报道其中5个基因与肝癌有密切联系.结论:可能影响肝癌发生发展的信号传导通路是细胞周期通路,后续我们将对细胞周期通路里的显著性基因进行验证.展开更多
Background Tetralogy of Fallot (TOF) is the most common malformation of children with an incidence of approximately 10% of congenital heart disease patients. There can be a wide spectrum to the severity of the anato...Background Tetralogy of Fallot (TOF) is the most common malformation of children with an incidence of approximately 10% of congenital heart disease patients. There can be a wide spectrum to the severity of the anatomic defects, which include ventricular septal defect, aortic override, right ventricular outflow tract obstruction, and right ventricular hypertrophy. We examined the relationship between right ventricular hypertrophy in patients with TOF and the gene expression of factors in the mitogen-activated protein kinase (MAPK) signal pathway. Methods To gain insight into the characteristic gene(s) involved in molecular mechanisms of right ventricular hypertrophy in TOF, differential mRNA and micro RNA expression profiles were assessed using expression-based micro array technology on right ventricular biopsies from young TOF patients who underwent primary correction and on normal heart tissue. We then analyzed the gene expression of the MAPK signal pathway using reverse transcription-polymerase chain reaction (RT-PCR) in normals and TOF patients. Results Using the micro RNA chip V3.0 and human whole genome oligonucleotide microarray VI.0 to detect the gene expression, we found 1068 genes showing altered expression of at least two-fold in TOF patients compared to the normal hearts, and 47 micro RNAs that showed a significant difference of at least two-fold in TOF patients. We then analyzed these mRNAs and micro RNAs by target gene predicting software Microcosm Targets version 5.0, and determined those mRNA highly relevant to the right ventricular hypertrophy by RT-PCR method. There were obvious differences in the gene expression of factors in the MAPK signal pathway when using RT-PCR, which was consistent to the results of the cDNA microarray.Conclusion The upregulation of genes in the MAPK signal pathway may be the key events that contribute to right ventricular hypertrophy and stunted angiogenesis in patients with TOF.展开更多
The increasing application of engineered nanoparticles(NPs) has posed an emerging challenge to constructed wetland wastewater treatment. The performance, microbial community and toxic mechanism of anammox-based unplan...The increasing application of engineered nanoparticles(NPs) has posed an emerging challenge to constructed wetland wastewater treatment. The performance, microbial community and toxic mechanism of anammox-based unplanted subsurface-flow constructed wetlands(USFCWs) were investigated under the long-term exposure of different graphene oxides(GOs) and Ag NP concentrations. Results showed that the addition of GO could promote TN removal, manifesting as function anammox bacteria C. Anammoxoglobus having a relative high abundance, for GO did not cause significant damage to the cell integrity though there was an increase in ROS concentrations. TN removal would not be obviously affected under exposure of 1 mg/L Ag NPs, for the function gene related to cell biogenesis and repair was up-regulated; while the addition of 10 mg/L Ag NPs would have an inhibiting effect on TN removal in the USFCWs, for the disappearance of some species having anammox ability. Key enzymes of anammox process(NIR and HDH) decreased to some extent under GO and Ag NP exposure, and function gene of defense mechanisms had an increase trend in samples.展开更多
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences(XDB31000000)the Consulting Research Projects of Hubei Institute of Chinese Engineering Development Strategies and Academic Divisions of the Chinese Academy of Sciences(2021-SM02-B-010)+2 种基金the Key Program of Frontier Sciences of the Chinese Academy of Sciences(Grant No.QYZDY-SSW-SMC025)the China Agriculture Research System(CARS-45-07)the Autonomous Project of the State Key Laboratory of Freshwater Ecology and Biotechnology(2019FBZ04).
文摘Fish biology has been developed for more than 100 years,but some important breakthroughs have been made in the last decade.Early studies commonly concentrated on morphology,phylogenetics,development,growth,reproduction manipulation,and disease control.Recent studies have mostly focused on genetics,molecular biology,genomics,and genome biotechnologies,which have provided a solid foundation for enhancing aquaculture to ensure food security and improving aquatic environments to sustain ecosystem health.Here,we review research advances in five major areas:(1)biological innovations and genomic evolution of four significant fish lineages including non-teleost ray-finned fishes,northern hemisphere sticklebacks,East African cichlid fishes,and East Asian cyprinid fishes;(2)evolutionary fates and consequences of natural polyploid fishes;(3)biological consequences of fish domestication and selection;(4)development and innovation of fish breeding biotechnologies;and(5)applicable approaches and potential of fish genetic breeding biotechnologies.Moreover,five precision breeding biotechniques are examined and discussed in detail including gene editing for the introgression or removal of beneficial or detrimental alleles,use of sex-specific markers for the production of mono-sex populations,controllable primordial germ cell on-off strategy for producing sterile offspring,surrogate broodstock-based strategies to accelerate breeding,and genome incorporation and sexual reproduction regainbased approach to create synthetic polyploids.Based on these scientific and technological advances,we propose a blueprint for genetic improvement and new breed creation for aquaculture species and analyze the potential of these new breeding strategies for improving aquaculture seed industry and strengthening food security.
文摘目的:筛选影响肝癌发生发展的关键基因.方法:运用跨种属肿瘤基因筛选策略比较不同种属的肝癌基因表达谱间的相似改变,选择5套不同种属的肝癌基因表达芯片分别通过基因组富集(gene set enrichment analysis,GSEA)以及对单套数据集单个基因元分析(meta-analysis,Meta)的分析方法,筛选出在转录水平上影响肝癌的基因.结果:用GSEA方法分析,5组数据中所得通路对比,上调中皆有的通路为氨基糖核苷酸糖代谢、细胞周期、甲状腺癌;下调中皆有的通路为亚油酸代谢、花生四烯酸代谢.对单套数据集单个基因进行Meta分析,共筛出P<0.05的基因1708个.用DAVID和KEGG网站的分析工具发现这1708个差异基因中有720个基因能够在KEGG库中筛出,主要分布在细胞周期、卵母细胞减数分裂、DNA复制等通路.这两种分析方法得出的通路中,重叠性较高的主要为细胞周期通路.在细胞周期通路中差异性有统计学意义(P<0.05)的基因25个,文献报道其中5个基因与肝癌有密切联系.结论:可能影响肝癌发生发展的信号传导通路是细胞周期通路,后续我们将对细胞周期通路里的显著性基因进行验证.
文摘Background Tetralogy of Fallot (TOF) is the most common malformation of children with an incidence of approximately 10% of congenital heart disease patients. There can be a wide spectrum to the severity of the anatomic defects, which include ventricular septal defect, aortic override, right ventricular outflow tract obstruction, and right ventricular hypertrophy. We examined the relationship between right ventricular hypertrophy in patients with TOF and the gene expression of factors in the mitogen-activated protein kinase (MAPK) signal pathway. Methods To gain insight into the characteristic gene(s) involved in molecular mechanisms of right ventricular hypertrophy in TOF, differential mRNA and micro RNA expression profiles were assessed using expression-based micro array technology on right ventricular biopsies from young TOF patients who underwent primary correction and on normal heart tissue. We then analyzed the gene expression of the MAPK signal pathway using reverse transcription-polymerase chain reaction (RT-PCR) in normals and TOF patients. Results Using the micro RNA chip V3.0 and human whole genome oligonucleotide microarray VI.0 to detect the gene expression, we found 1068 genes showing altered expression of at least two-fold in TOF patients compared to the normal hearts, and 47 micro RNAs that showed a significant difference of at least two-fold in TOF patients. We then analyzed these mRNAs and micro RNAs by target gene predicting software Microcosm Targets version 5.0, and determined those mRNA highly relevant to the right ventricular hypertrophy by RT-PCR method. There were obvious differences in the gene expression of factors in the MAPK signal pathway when using RT-PCR, which was consistent to the results of the cDNA microarray.Conclusion The upregulation of genes in the MAPK signal pathway may be the key events that contribute to right ventricular hypertrophy and stunted angiogenesis in patients with TOF.
基金financially supported by the National Key R&D Program of China(No.2017YFC0505901)the National Natural Science Foundation of China(Nos.41401548+2 种基金 41772244)the Open Project of State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology(No.HC201622)the China Scholarship Council(Nos.201804910339,201806175055)
文摘The increasing application of engineered nanoparticles(NPs) has posed an emerging challenge to constructed wetland wastewater treatment. The performance, microbial community and toxic mechanism of anammox-based unplanted subsurface-flow constructed wetlands(USFCWs) were investigated under the long-term exposure of different graphene oxides(GOs) and Ag NP concentrations. Results showed that the addition of GO could promote TN removal, manifesting as function anammox bacteria C. Anammoxoglobus having a relative high abundance, for GO did not cause significant damage to the cell integrity though there was an increase in ROS concentrations. TN removal would not be obviously affected under exposure of 1 mg/L Ag NPs, for the function gene related to cell biogenesis and repair was up-regulated; while the addition of 10 mg/L Ag NPs would have an inhibiting effect on TN removal in the USFCWs, for the disappearance of some species having anammox ability. Key enzymes of anammox process(NIR and HDH) decreased to some extent under GO and Ag NP exposure, and function gene of defense mechanisms had an increase trend in samples.