Methylmercury(MeHg) bioaccumulation is a growing concern in ecosystems worldwide. The absorption of solar radiation by dissolved organic matter(DOM) and other photoreactive ligands can convert MeHg into less toxic...Methylmercury(MeHg) bioaccumulation is a growing concern in ecosystems worldwide. The absorption of solar radiation by dissolved organic matter(DOM) and other photoreactive ligands can convert MeHg into less toxic forms of mercury through photodemethylation. In this study, spectral changes and photoreactivity of DOM were measured to assess the potential to control photoreactions and predict in situ MeHg concentration. Water samples collected from a series of lakes in southwestern Nova Scotia in June, August, and September were exposed to controlled ultraviolet-A(UV-A) radiation for up to 24 hr. Dissolved organic matter photoreactivity, measured as the loss of absorbance at 350 nm at constant UV-A irradiation, was positively dependent on the initial DOM concentration in lake waters(r^2=0.94). This relationship was consistent over time with both DOM concentration and photoreactivity increasing from summer into fall across lakes. Lake in situ MeHg concentration was positively correlated with DOM concentration and likely catchment transport in June(r = 0.77) but not the other sampling months. Despite a consistent seasonal variation in both DOM and Fe, and their respective correlations with MeHg, no discernable seasonal trend in MeHg was observed. However, a 3-year dataset from the 6 study lakes revealed a positive correlation between DOM concentration and both Fe(r = 0.91) and MeHg concentrations(r = 0.51) suggesting a more dominant landscape mobility control on MeHg.The DOM-MeHg relationships observed in these lakes highlights the need to examine DOM photoreactivity controls on MeHg transport and availability in natural waters particularly given future climate perturbations.展开更多
Mercury is a globally distributed, environmental contaminant. Quantifying the retention and loss of mercury is integral for predicting mercury-sensitive ecosystems. There is little information on how dissolved organic...Mercury is a globally distributed, environmental contaminant. Quantifying the retention and loss of mercury is integral for predicting mercury-sensitive ecosystems. There is little information on how dissolved organic carbon(DOC) concentrations and particulates affect mercury photoreaction kinetics in freshwater lakes. To address this knowledge gap,samples were collected from ten lakes in Kejimkujik National Park, Nova Scotia(DOC: 2.6–15.4 mg/L). Filtered(0.2 μm) and unfiltered samples were analysed for gross photoreduction, gross photooxidation, and net reduction rates of mercury using pseudo first-order curves. Unfiltered samples had higher concentrations(p = 0.04) of photoreducible divalent mercury(Hg(II)RED)(mean of 754 ± 253 pg/L) than filtered samples(mean of 482 ± 206 pg/L);however, gross photoreduction and photooxidation rate constants were not significantly different in filtered or unfiltered samples in early summer. DOC was not significantly related to gross photoreduction rate constants in filtered(R2= 0.43; p = 0.08) and unfiltered(R2= 0.02; p = 0.71) samples; DOC was also not significantly related to gross photooxidation rate constants in filtered or unfiltered samples. However, DOC was significantly negatively related with Hg(Ⅱ)RED in unfiltered(R2= 0.53; p = 0.04), but not in filtered samples(R2= 0.04;p = 0.60). These trends indicate that DOC is a factor in determining dissolved mercury photoreduction rates and particles partially control available Hg(Ⅱ)RED in lake water. This research also demonstrates that within these lakes gross photoreduction and photooxidation processes are close to being in balance. Changes to catchment inputs of particulate matter and DOC may alter mercury retention in these lakes and could partially explain observed increases of mercury accumulation in biota.展开更多
基金provided from the National Science and Engineering Council (NSERC) of Canada in the form of a discovery grant (#341960-2013)Canada Research Chair (#950-203477)an NSERC CREATE (#371177-2010)scholarship to S.J.K
文摘Methylmercury(MeHg) bioaccumulation is a growing concern in ecosystems worldwide. The absorption of solar radiation by dissolved organic matter(DOM) and other photoreactive ligands can convert MeHg into less toxic forms of mercury through photodemethylation. In this study, spectral changes and photoreactivity of DOM were measured to assess the potential to control photoreactions and predict in situ MeHg concentration. Water samples collected from a series of lakes in southwestern Nova Scotia in June, August, and September were exposed to controlled ultraviolet-A(UV-A) radiation for up to 24 hr. Dissolved organic matter photoreactivity, measured as the loss of absorbance at 350 nm at constant UV-A irradiation, was positively dependent on the initial DOM concentration in lake waters(r^2=0.94). This relationship was consistent over time with both DOM concentration and photoreactivity increasing from summer into fall across lakes. Lake in situ MeHg concentration was positively correlated with DOM concentration and likely catchment transport in June(r = 0.77) but not the other sampling months. Despite a consistent seasonal variation in both DOM and Fe, and their respective correlations with MeHg, no discernable seasonal trend in MeHg was observed. However, a 3-year dataset from the 6 study lakes revealed a positive correlation between DOM concentration and both Fe(r = 0.91) and MeHg concentrations(r = 0.51) suggesting a more dominant landscape mobility control on MeHg.The DOM-MeHg relationships observed in these lakes highlights the need to examine DOM photoreactivity controls on MeHg transport and availability in natural waters particularly given future climate perturbations.
基金funded by NSERC (CGS-M scholarship to E.V. and discovery grant (Grant# 341960-2013) to N.O.)the Canada Research Chairs Program (Grant# 950-203477 to N.O.)the Canada Foundation for Innovation (Grant# 203477 to N.O.)
文摘Mercury is a globally distributed, environmental contaminant. Quantifying the retention and loss of mercury is integral for predicting mercury-sensitive ecosystems. There is little information on how dissolved organic carbon(DOC) concentrations and particulates affect mercury photoreaction kinetics in freshwater lakes. To address this knowledge gap,samples were collected from ten lakes in Kejimkujik National Park, Nova Scotia(DOC: 2.6–15.4 mg/L). Filtered(0.2 μm) and unfiltered samples were analysed for gross photoreduction, gross photooxidation, and net reduction rates of mercury using pseudo first-order curves. Unfiltered samples had higher concentrations(p = 0.04) of photoreducible divalent mercury(Hg(II)RED)(mean of 754 ± 253 pg/L) than filtered samples(mean of 482 ± 206 pg/L);however, gross photoreduction and photooxidation rate constants were not significantly different in filtered or unfiltered samples in early summer. DOC was not significantly related to gross photoreduction rate constants in filtered(R2= 0.43; p = 0.08) and unfiltered(R2= 0.02; p = 0.71) samples; DOC was also not significantly related to gross photooxidation rate constants in filtered or unfiltered samples. However, DOC was significantly negatively related with Hg(Ⅱ)RED in unfiltered(R2= 0.53; p = 0.04), but not in filtered samples(R2= 0.04;p = 0.60). These trends indicate that DOC is a factor in determining dissolved mercury photoreduction rates and particles partially control available Hg(Ⅱ)RED in lake water. This research also demonstrates that within these lakes gross photoreduction and photooxidation processes are close to being in balance. Changes to catchment inputs of particulate matter and DOC may alter mercury retention in these lakes and could partially explain observed increases of mercury accumulation in biota.