The hydrosilylation is one of the most important methods for the synthesis of organosilicon compounds. Karstedt's catalyst [Pt,(H2C=CHSiMe2OSiMe2CH = CH2)m] is a kind of platinum catalyst which is widely used in th...The hydrosilylation is one of the most important methods for the synthesis of organosilicon compounds. Karstedt's catalyst [Pt,(H2C=CHSiMe2OSiMe2CH = CH2)m] is a kind of platinum catalyst which is widely used in the hydrosilylation. In this paper, we studied the catalytic activity of Karstedt's catalyst for the hydrogenation of olefins and especially aminated alkenes with trimethoxysilane and triethoxysilane, and demonstrated the excellent performance in terms of the yield and selectivity.展开更多
Methyl-(γ-chloropropyl)dichlorosilane was synthesized under the catalysis of a silicasupported Karstedt-type catalyst. By orthogonal experimental design method, the optimum reaction parameters such as reactants rat...Methyl-(γ-chloropropyl)dichlorosilane was synthesized under the catalysis of a silicasupported Karstedt-type catalyst. By orthogonal experimental design method, the optimum reaction parameters such as reactants ratio, reaction temperature and time, and the dosage of catalyst, were determined. At the optimum reaction condition the product yield reached 78.42%, which is higher than that reported in the literatures.展开更多
基金Acknowledgement This work was supported by the National Natural Science Foundation of China under grant No. 21371096.
文摘The hydrosilylation is one of the most important methods for the synthesis of organosilicon compounds. Karstedt's catalyst [Pt,(H2C=CHSiMe2OSiMe2CH = CH2)m] is a kind of platinum catalyst which is widely used in the hydrosilylation. In this paper, we studied the catalytic activity of Karstedt's catalyst for the hydrogenation of olefins and especially aminated alkenes with trimethoxysilane and triethoxysilane, and demonstrated the excellent performance in terms of the yield and selectivity.
基金support from the National Natural Science Foundation of China(No.50473036)
文摘Methyl-(γ-chloropropyl)dichlorosilane was synthesized under the catalysis of a silicasupported Karstedt-type catalyst. By orthogonal experimental design method, the optimum reaction parameters such as reactants ratio, reaction temperature and time, and the dosage of catalyst, were determined. At the optimum reaction condition the product yield reached 78.42%, which is higher than that reported in the literatures.