An ablation model of targets irradiated by pulsed laser is established. By using the simple energy balance conditions, the relationship between ablation surface location and time is derived. By an adiabatic approximat...An ablation model of targets irradiated by pulsed laser is established. By using the simple energy balance conditions, the relationship between ablation surface location and time is derived. By an adiabatic approximation, the continuous-temperature condition, energy conservation and all boundary conditions can be established. By applying the analytical method and integral-approximation method, the solid and liquid phase temperature distributions are obtained and found to be a function of time and location. The interface of solid and liquid phase is also derived. The results are compared with the other published data. In addition, the dynamics process of pulsed laser deposition of KTN (Kta0.65Nb0.35O3) thin film is simulated in detail by using fluid dynamics theory. By combining the expression of the target ablation ratio and the dynamic equation and by using the experimental data, the effects of laser action parameters on the thickness distribution of thin film and on the thin film component characteristics are discussed. The results are in good agreement with the experimental data.展开更多
Potassium tantalate niobate (KTa1-xNbxO3, KTN) crystals with different dimensions and quality situations were grown by Czochralski method. Crystal growth process and morphology properties of KTN are presented in thi...Potassium tantalate niobate (KTa1-xNbxO3, KTN) crystals with different dimensions and quality situations were grown by Czochralski method. Crystal growth process and morphology properties of KTN are presented in this paper. It was found that some defects, such as bubble, inclusion, crack, dislocation etc., can all appear if the crystal is grown in an improper condition. The character and formation mechanism of such defects in macro growth are discussed. We consider that the CO2, which was not released absolutely during the sintering process and dissolved in the melt, led to bubbles. The composition of the inclusion caused by high pulling and rotation rates is KTN polycrystalline. The crack and dislocation in KTN crystal mainly come from improper temperature field. Etching and high-resolution X-ray diffraction (HRXRD) experiment results indicate that the central area is the defects concentrated.展开更多
We developed high-speed time-domain (TD) en face optical coherence tomography (OCT) system using KTN optical beam deflector. The KTN optical beam deflector operates at a high repetition rate of 200 kHz with a fairly l...We developed high-speed time-domain (TD) en face optical coherence tomography (OCT) system using KTN optical beam deflector. The KTN optical beam deflector operates at a high repetition rate of 200 kHz with a fairly large beam deflection angle. We proposed a high-speed en face OCT system that used a KTN optical deflector as the sample beam scanning. In the experiment, we obtained en face OCT images of human fingerprint with a frame rate of 800 fps, which is the fastest speed obtained by a TD-OCT imaging. Furthermore, a 3D-OCT image was also obtained at 0.2 s (=5 volumes/s) by our imaging system.展开更多
Using the Sol-Gel method to produce the KTN ultrafine powder and the sintering technique with K2O atmosphere to prepare KTN ceramics as the targets instead of the KTN single crystal, highly oriented KTN thin films wer...Using the Sol-Gel method to produce the KTN ultrafine powder and the sintering technique with K2O atmosphere to prepare KTN ceramics as the targets instead of the KTN single crystal, highly oriented KTN thin films were produced on the transparent single crystal quartz (100) by the pulsed laser deposition (PLD). Since the thermal stress sustained by the quartz is relatively small, the limit temperature of the quartz substrates(300℃) is much lower than that of the P-Si substrates (560℃); the prepared thin film is at amorphous state. Increasing the pulsed laser energy density in the process incorporated with annealing the film after deposition at different temperatures converts the amorphous films into crystal. The optimal pulsed laser energy density and annealing temperature were 2.0 J/cm2 and 600℃, respectively. A discussion was made to understand the mechanism of film production at relatively low substrate temperature by PLD and effects of the annealing temperatures on the forming of the perovskite phase, and optimal conditions for the orientation of the crystal grain.展开更多
1 Introduction The Sol-Gel process has received a great deal of attention, primarily because it can offer many advantages over the conventional process, such as high purity, molecular-level homogeneity, easier composi...1 Introduction The Sol-Gel process has received a great deal of attention, primarily because it can offer many advantages over the conventional process, such as high purity, molecular-level homogeneity, easier composition control and reduced processing temperature. These advantages make Sol-Gel process become one of the promising fabrication methods for ferroelectric ceramics. Sol-Gel-derived thin films of BaTiO<sub>3</sub>, PbTiO<sub>3</sub>, Pb (Zr, Ti)O<sub>3</sub>, PLZT and others have all been reported, but there is little information relating to the potential展开更多
We demonstrate a high-speed swept-source optical coherence tomography (SS-OCT) system, which is based on a high-speed swept light source and a Mach-Zehnder interferometer with a high-speed photodetector. The light sou...We demonstrate a high-speed swept-source optical coherence tomography (SS-OCT) system, which is based on a high-speed swept light source and a Mach-Zehnder interferometer with a high-speed photodetector. The light source is an external-cavity laser tuned by a KTN electro-optic deflector, which exhibits a very fast response and large deflection. The scanning wavelength range is almost 80 nm up to 200 kHz with a ±400-V deflector driving voltage. The system acquires 1 mm × 1 mm images consisting of 200 × 200 pixels within few milliseconds. We present preliminary SS-OCT images of an in-vitro human nail and an in-vivo finger pad.展开更多
We have developed optical coherence tomography system with KTN optical probe for a diagnosis in the orthopedic surgery fields. The present system demonstrates that biological image was measured by using KTN optical sc...We have developed optical coherence tomography system with KTN optical probe for a diagnosis in the orthopedic surgery fields. The present system demonstrates that biological image was measured by using KTN optical scanner for having degree of freedom in sample arm as optical coherence tomography. In addition, the developed optical coherence tomography (OCT) system has shown feasibility for imaging biological tissue in orthopedics. The system was shown to have a resolution 14.2 μm for biological tissue in few mm depths. The sensitivity to be measured is 92.3 dB.展开更多
文摘An ablation model of targets irradiated by pulsed laser is established. By using the simple energy balance conditions, the relationship between ablation surface location and time is derived. By an adiabatic approximation, the continuous-temperature condition, energy conservation and all boundary conditions can be established. By applying the analytical method and integral-approximation method, the solid and liquid phase temperature distributions are obtained and found to be a function of time and location. The interface of solid and liquid phase is also derived. The results are compared with the other published data. In addition, the dynamics process of pulsed laser deposition of KTN (Kta0.65Nb0.35O3) thin film is simulated in detail by using fluid dynamics theory. By combining the expression of the target ablation ratio and the dynamic equation and by using the experimental data, the effects of laser action parameters on the thickness distribution of thin film and on the thin film component characteristics are discussed. The results are in good agreement with the experimental data.
文摘Potassium tantalate niobate (KTa1-xNbxO3, KTN) crystals with different dimensions and quality situations were grown by Czochralski method. Crystal growth process and morphology properties of KTN are presented in this paper. It was found that some defects, such as bubble, inclusion, crack, dislocation etc., can all appear if the crystal is grown in an improper condition. The character and formation mechanism of such defects in macro growth are discussed. We consider that the CO2, which was not released absolutely during the sintering process and dissolved in the melt, led to bubbles. The composition of the inclusion caused by high pulling and rotation rates is KTN polycrystalline. The crack and dislocation in KTN crystal mainly come from improper temperature field. Etching and high-resolution X-ray diffraction (HRXRD) experiment results indicate that the central area is the defects concentrated.
文摘We developed high-speed time-domain (TD) en face optical coherence tomography (OCT) system using KTN optical beam deflector. The KTN optical beam deflector operates at a high repetition rate of 200 kHz with a fairly large beam deflection angle. We proposed a high-speed en face OCT system that used a KTN optical deflector as the sample beam scanning. In the experiment, we obtained en face OCT images of human fingerprint with a frame rate of 800 fps, which is the fastest speed obtained by a TD-OCT imaging. Furthermore, a 3D-OCT image was also obtained at 0.2 s (=5 volumes/s) by our imaging system.
文摘Using the Sol-Gel method to produce the KTN ultrafine powder and the sintering technique with K2O atmosphere to prepare KTN ceramics as the targets instead of the KTN single crystal, highly oriented KTN thin films were produced on the transparent single crystal quartz (100) by the pulsed laser deposition (PLD). Since the thermal stress sustained by the quartz is relatively small, the limit temperature of the quartz substrates(300℃) is much lower than that of the P-Si substrates (560℃); the prepared thin film is at amorphous state. Increasing the pulsed laser energy density in the process incorporated with annealing the film after deposition at different temperatures converts the amorphous films into crystal. The optimal pulsed laser energy density and annealing temperature were 2.0 J/cm2 and 600℃, respectively. A discussion was made to understand the mechanism of film production at relatively low substrate temperature by PLD and effects of the annealing temperatures on the forming of the perovskite phase, and optimal conditions for the orientation of the crystal grain.
文摘1 Introduction The Sol-Gel process has received a great deal of attention, primarily because it can offer many advantages over the conventional process, such as high purity, molecular-level homogeneity, easier composition control and reduced processing temperature. These advantages make Sol-Gel process become one of the promising fabrication methods for ferroelectric ceramics. Sol-Gel-derived thin films of BaTiO<sub>3</sub>, PbTiO<sub>3</sub>, Pb (Zr, Ti)O<sub>3</sub>, PLZT and others have all been reported, but there is little information relating to the potential
文摘We demonstrate a high-speed swept-source optical coherence tomography (SS-OCT) system, which is based on a high-speed swept light source and a Mach-Zehnder interferometer with a high-speed photodetector. The light source is an external-cavity laser tuned by a KTN electro-optic deflector, which exhibits a very fast response and large deflection. The scanning wavelength range is almost 80 nm up to 200 kHz with a ±400-V deflector driving voltage. The system acquires 1 mm × 1 mm images consisting of 200 × 200 pixels within few milliseconds. We present preliminary SS-OCT images of an in-vitro human nail and an in-vivo finger pad.
文摘We have developed optical coherence tomography system with KTN optical probe for a diagnosis in the orthopedic surgery fields. The present system demonstrates that biological image was measured by using KTN optical scanner for having degree of freedom in sample arm as optical coherence tomography. In addition, the developed optical coherence tomography (OCT) system has shown feasibility for imaging biological tissue in orthopedics. The system was shown to have a resolution 14.2 μm for biological tissue in few mm depths. The sensitivity to be measured is 92.3 dB.