期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于属性散射中心目标重构加权决策融合的SAR目标识别方法
1
作者
吕虎
《电光与控制》
CSCD
北大核心
2024年第2期112-117,124,共7页
针对合成孔径雷达(SAR)图像目标识别问题,采用原始图像及其属性散射中心目标重构结果进行决策融合。以核稀疏表示分类(KSRC)为基础分类器,对原始及重构SAR图像进行分类。KSRC通过引入核函数提升分类适应能力;目标重构可有效剔除原始SAR...
针对合成孔径雷达(SAR)图像目标识别问题,采用原始图像及其属性散射中心目标重构结果进行决策融合。以核稀疏表示分类(KSRC)为基础分类器,对原始及重构SAR图像进行分类。KSRC通过引入核函数提升分类适应能力;目标重构可有效剔除原始SAR图像中的噪声成分。根据目标重构过程中重构结果与残差的能量关系评估原始SAR图像噪声水平,并以此为依据确定原始图像和重构图像决策结果的权重。采用加权融合手段对两个结果进行处理,判断测试样本的目标类别。基于MSTAR数据集对方法进行测试,实验结果证明了其有效性。
展开更多
关键词
合成孔径雷达
目标识别
属性散射中心
目标重构
ksrc
决策融合
下载PDF
职称材料
基于Metaface字典学习与核稀疏表示的人脸识别方法
2
作者
曹玲
朱煜
+1 位作者
陈宁
陈志华
《华东理工大学学报(自然科学版)》
CAS
CSCD
北大核心
2015年第2期256-259,276,共5页
完备的稀疏表示方法近年来应用在人脸识别中并取得较好的结果,它可以仅利用样本的随机投影完成对测试样本的识别。在实际应用中,由于受光照、遮挡等因素的影响,测试样本并不能通过训练样本的线性组合得到很好的稀疏重构。本文提出了基于...
完备的稀疏表示方法近年来应用在人脸识别中并取得较好的结果,它可以仅利用样本的随机投影完成对测试样本的识别。在实际应用中,由于受光照、遮挡等因素的影响,测试样本并不能通过训练样本的线性组合得到很好的稀疏重构。本文提出了基于Metaface字典学习与核稀疏表示的人脸识别方法,借助核技巧,将数据样本和字典集映射到高维的未知空间,以解决特征的非线性相似问题。在核空间对数据样本进行稀疏重构,得到数据在核空间的一种简洁的稀疏表达方式从而提高识别率,而Metaface字典学习框架的引入可以得到更加精炼的字典,从全局上提高识别率。通过在ORL人脸库、Yale人脸库和AR人脸库的实验表明,同等情况下,本文提出的方法优于PCA,SVM,SRC等方法,进一步提高了人脸识别率,具有较好的应用价值。
展开更多
关键词
稀疏表示
人脸识别
PCA
Metaface字典学习
核稀疏表示(
ksrc
)
下载PDF
职称材料
题名
基于属性散射中心目标重构加权决策融合的SAR目标识别方法
1
作者
吕虎
机构
南昌理工学院
出处
《电光与控制》
CSCD
北大核心
2024年第2期112-117,124,共7页
文摘
针对合成孔径雷达(SAR)图像目标识别问题,采用原始图像及其属性散射中心目标重构结果进行决策融合。以核稀疏表示分类(KSRC)为基础分类器,对原始及重构SAR图像进行分类。KSRC通过引入核函数提升分类适应能力;目标重构可有效剔除原始SAR图像中的噪声成分。根据目标重构过程中重构结果与残差的能量关系评估原始SAR图像噪声水平,并以此为依据确定原始图像和重构图像决策结果的权重。采用加权融合手段对两个结果进行处理,判断测试样本的目标类别。基于MSTAR数据集对方法进行测试,实验结果证明了其有效性。
关键词
合成孔径雷达
目标识别
属性散射中心
目标重构
ksrc
决策融合
Keywords
synthetic aperture radar
target recognition
attribute scattering center
target reconstruction
ksrc
decision fusion
分类号
TP753 [自动化与计算机技术—检测技术与自动化装置]
下载PDF
职称材料
题名
基于Metaface字典学习与核稀疏表示的人脸识别方法
2
作者
曹玲
朱煜
陈宁
陈志华
机构
华东理工大学信息科学与工程学院
出处
《华东理工大学学报(自然科学版)》
CAS
CSCD
北大核心
2015年第2期256-259,276,共5页
基金
国家自然科学基金(61271349
61370174)
+1 种基金
中央高校基本科研业务费专项资金(WH1114030
WH1214015)
文摘
完备的稀疏表示方法近年来应用在人脸识别中并取得较好的结果,它可以仅利用样本的随机投影完成对测试样本的识别。在实际应用中,由于受光照、遮挡等因素的影响,测试样本并不能通过训练样本的线性组合得到很好的稀疏重构。本文提出了基于Metaface字典学习与核稀疏表示的人脸识别方法,借助核技巧,将数据样本和字典集映射到高维的未知空间,以解决特征的非线性相似问题。在核空间对数据样本进行稀疏重构,得到数据在核空间的一种简洁的稀疏表达方式从而提高识别率,而Metaface字典学习框架的引入可以得到更加精炼的字典,从全局上提高识别率。通过在ORL人脸库、Yale人脸库和AR人脸库的实验表明,同等情况下,本文提出的方法优于PCA,SVM,SRC等方法,进一步提高了人脸识别率,具有较好的应用价值。
关键词
稀疏表示
人脸识别
PCA
Metaface字典学习
核稀疏表示(
ksrc
)
Keywords
SRC
human face recognition
PCA
Metaface learning
ksrc
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于属性散射中心目标重构加权决策融合的SAR目标识别方法
吕虎
《电光与控制》
CSCD
北大核心
2024
0
下载PDF
职称材料
2
基于Metaface字典学习与核稀疏表示的人脸识别方法
曹玲
朱煜
陈宁
陈志华
《华东理工大学学报(自然科学版)》
CAS
CSCD
北大核心
2015
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部