树增强朴素贝叶斯(TAN)分类器在模型的复杂性和分类精度之间实现较好折衷,成为当前分类器学习的一个研究热点.为了提高 TAN 分类器的分类准确率,本文提出一种基于 KL 距离的 TAN 分类器判别性学习方法.首先用 EAR 方法学习 TAN 分类器...树增强朴素贝叶斯(TAN)分类器在模型的复杂性和分类精度之间实现较好折衷,成为当前分类器学习的一个研究热点.为了提高 TAN 分类器的分类准确率,本文提出一种基于 KL 距离的 TAN 分类器判别性学习方法.首先用 EAR 方法学习 TAN 分类器的结构,然后用基于 KL 距离的目标函数优化 TAN 的参数.在标准数据集上的实验结果表明,用该方法学习的 TAN 分类器具有较高的分类精度.展开更多
文摘树增强朴素贝叶斯(TAN)分类器在模型的复杂性和分类精度之间实现较好折衷,成为当前分类器学习的一个研究热点.为了提高 TAN 分类器的分类准确率,本文提出一种基于 KL 距离的 TAN 分类器判别性学习方法.首先用 EAR 方法学习 TAN 分类器的结构,然后用基于 KL 距离的目标函数优化 TAN 的参数.在标准数据集上的实验结果表明,用该方法学习的 TAN 分类器具有较高的分类精度.