提出适用于配有三维激光雷达的自主移动机器人在室外场景进行同时定位与地图创建(simul-taneous localization and mapping, SLAM)的一种闭环检测算法,命名为SegGraph.作为SLAM的关键模块,闭环检测的任务是判断机器人当前位置是否与已...提出适用于配有三维激光雷达的自主移动机器人在室外场景进行同时定位与地图创建(simul-taneous localization and mapping, SLAM)的一种闭环检测算法,命名为SegGraph.作为SLAM的关键模块,闭环检测的任务是判断机器人当前位置是否与已到过的某一位置邻近.SegGraph包含3步:1)对在不同时刻得到的2组点云分别移除大地平面后采用区域增长方法分割为若干个点云簇;2)以点云簇为顶点,以点云簇图心间距离为边权值,分别构建带权值的完全图;3)判定所得的2个完全图是否含有足够大的公共子图.SegGraph的主要创新点是在寻找公共子图时以边权值(即点云簇间距离)为主要匹配依据.这是因为点云数据中的噪声会导致在邻近地点获得的不同点云经分割后得出差别很大的点云簇集,不同点云中相应的点云簇也便无法匹配.然而相应点云簇间距离却受分割过程影响不大.主要贡献包括研发高效的判定2个点云簇图是否有足够大的公共子图的近似算法,实现完整的SegGraph算法,及以被广泛使用的公开数据集KITTI(Karlsruhe Institute of Technology and Toyota Technological Institute)评估SegGraph的准确度及运行效率.实验结果显示SegGraph具有良好的准确度及运行效率.展开更多
目的基于点云的3D目标检测是自动驾驶领域的重要技术之一。由于点云的非结构化特性,通常将点云进行体素化处理,然后基于体素特征完成3D目标检测任务。在基于体素的3D目标检测算法中,对点云进行体素化时会导致部分点云的数据信息和结构...目的基于点云的3D目标检测是自动驾驶领域的重要技术之一。由于点云的非结构化特性,通常将点云进行体素化处理,然后基于体素特征完成3D目标检测任务。在基于体素的3D目标检测算法中,对点云进行体素化时会导致部分点云的数据信息和结构信息的损失,降低检测效果。针对该问题,本文提出一种融合点云深度信息的方法,有效提高了3D目标检测的精度。方法首先将点云通过球面投影的方法转换为深度图像,然后将深度图像与3D目标检测算法提取的特征图进行融合,从而对损失信息进行补全。由于此时的融合特征以2D伪图像的形式表示,因此使用YOLOv7(you only look once v7)中的主干网络提取融合特征。最后设计回归与分类网络,将提取到的融合特征送入到网络中预测目标的位置、大小以及类别。结果本文方法在KITTI(Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago)数据集和DAIR-V2X数据集上进行测试。以AP(average precision)值为评价指标,在KITTI数据集上,改进算法PP-Depth相较于PointPillars在汽车、行人和自行车类别上分别有0.84%、2.3%和1.77%的提升。以自行车简单难度为例,改进算法PP-YOLO-Depth相较于PointPillars、PP-YOLO和PP-Depth分别有5.15%、1.1%和2.75%的提升。在DAIR-V2X数据集上,PP-Depth相较于PointPillars在汽车、行人和自行车类别上分别有17.46%、20.72%和12.7%的提升。以汽车简单难度为例,PP-YOLO-Depth相较于PointPillars、PP-YOLO和PP-Depth分别有13.53%、5.59%和1.08%的提升。结论本文方法在KITTI数据集和DAIR-V2X数据集上都取得了较好表现,减少了点云在体素化过程中的信息损失并提高了网络对融合特征的提取能力和多尺度目标的检测性能,使目标检测结果更加准确。展开更多
文摘提出适用于配有三维激光雷达的自主移动机器人在室外场景进行同时定位与地图创建(simul-taneous localization and mapping, SLAM)的一种闭环检测算法,命名为SegGraph.作为SLAM的关键模块,闭环检测的任务是判断机器人当前位置是否与已到过的某一位置邻近.SegGraph包含3步:1)对在不同时刻得到的2组点云分别移除大地平面后采用区域增长方法分割为若干个点云簇;2)以点云簇为顶点,以点云簇图心间距离为边权值,分别构建带权值的完全图;3)判定所得的2个完全图是否含有足够大的公共子图.SegGraph的主要创新点是在寻找公共子图时以边权值(即点云簇间距离)为主要匹配依据.这是因为点云数据中的噪声会导致在邻近地点获得的不同点云经分割后得出差别很大的点云簇集,不同点云中相应的点云簇也便无法匹配.然而相应点云簇间距离却受分割过程影响不大.主要贡献包括研发高效的判定2个点云簇图是否有足够大的公共子图的近似算法,实现完整的SegGraph算法,及以被广泛使用的公开数据集KITTI(Karlsruhe Institute of Technology and Toyota Technological Institute)评估SegGraph的准确度及运行效率.实验结果显示SegGraph具有良好的准确度及运行效率.
文摘目的基于点云的3D目标检测是自动驾驶领域的重要技术之一。由于点云的非结构化特性,通常将点云进行体素化处理,然后基于体素特征完成3D目标检测任务。在基于体素的3D目标检测算法中,对点云进行体素化时会导致部分点云的数据信息和结构信息的损失,降低检测效果。针对该问题,本文提出一种融合点云深度信息的方法,有效提高了3D目标检测的精度。方法首先将点云通过球面投影的方法转换为深度图像,然后将深度图像与3D目标检测算法提取的特征图进行融合,从而对损失信息进行补全。由于此时的融合特征以2D伪图像的形式表示,因此使用YOLOv7(you only look once v7)中的主干网络提取融合特征。最后设计回归与分类网络,将提取到的融合特征送入到网络中预测目标的位置、大小以及类别。结果本文方法在KITTI(Karlsruhe Institute of Technology and Toyota Technological Institute at Chicago)数据集和DAIR-V2X数据集上进行测试。以AP(average precision)值为评价指标,在KITTI数据集上,改进算法PP-Depth相较于PointPillars在汽车、行人和自行车类别上分别有0.84%、2.3%和1.77%的提升。以自行车简单难度为例,改进算法PP-YOLO-Depth相较于PointPillars、PP-YOLO和PP-Depth分别有5.15%、1.1%和2.75%的提升。在DAIR-V2X数据集上,PP-Depth相较于PointPillars在汽车、行人和自行车类别上分别有17.46%、20.72%和12.7%的提升。以汽车简单难度为例,PP-YOLO-Depth相较于PointPillars、PP-YOLO和PP-Depth分别有13.53%、5.59%和1.08%的提升。结论本文方法在KITTI数据集和DAIR-V2X数据集上都取得了较好表现,减少了点云在体素化过程中的信息损失并提高了网络对融合特征的提取能力和多尺度目标的检测性能,使目标检测结果更加准确。