期刊导航
期刊开放获取
cqvip
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于Kernel Discriminant Canonical Correlation(KDCC)的多观测样本分类算法
1
作者
牛晓霞
胡正平
王玲丽
《数学的实践与认识》
CSCD
北大核心
2012年第9期96-107,共12页
针对多观测样本分类问题,提出一种基于Kernel Discriminant CanonicalCorrelation(KDCC)来实现多观测样本分类的模型.该算法首先把原空间样本非线性的投影到高维特征空间,通过KPCA得到核子空间,然后在高维特征空间定义一个使类内核子空...
针对多观测样本分类问题,提出一种基于Kernel Discriminant CanonicalCorrelation(KDCC)来实现多观测样本分类的模型.该算法首先把原空间样本非线性的投影到高维特征空间,通过KPCA得到核子空间,然后在高维特征空间定义一个使类内核子空间的相关性最大,同时使类间核子空间的相关性最小的KDCC矩阵,通过迭代法训练出最优的KDCC矩阵,把每个核子空间投影到KDCC矩阵上得到转换核子空间,采用典型相关性作为转换核子空间之间的相似性度量,并采用最近邻准则作为多观测样本的分类决策,从而实现多观测样本的分类.在三个数据库上进行了一系列实验,实验结果表明提出的方法对于多观测样本分类具有可行性和有效性.
展开更多
关键词
kdcc
典型相关性
最近邻分类
多观测样本
原文传递
题名
基于Kernel Discriminant Canonical Correlation(KDCC)的多观测样本分类算法
1
作者
牛晓霞
胡正平
王玲丽
机构
燕山大学信息科学与工程学院
出处
《数学的实践与认识》
CSCD
北大核心
2012年第9期96-107,共12页
基金
国家自然科学基金(61071199)
河北省自然科学基金(F2010001297)
+1 种基金
中国博士后自然科学基金(20080440124)
第二批中国博士后基金特别资助(200902356)
文摘
针对多观测样本分类问题,提出一种基于Kernel Discriminant CanonicalCorrelation(KDCC)来实现多观测样本分类的模型.该算法首先把原空间样本非线性的投影到高维特征空间,通过KPCA得到核子空间,然后在高维特征空间定义一个使类内核子空间的相关性最大,同时使类间核子空间的相关性最小的KDCC矩阵,通过迭代法训练出最优的KDCC矩阵,把每个核子空间投影到KDCC矩阵上得到转换核子空间,采用典型相关性作为转换核子空间之间的相似性度量,并采用最近邻准则作为多观测样本的分类决策,从而实现多观测样本的分类.在三个数据库上进行了一系列实验,实验结果表明提出的方法对于多观测样本分类具有可行性和有效性.
关键词
kdcc
典型相关性
最近邻分类
多观测样本
Keywords
kdcc
canonical correlation
nearest neighbor classification
multiple observation samples
分类号
TP301.6 [自动化与计算机技术—计算机系统结构]
原文传递
题名
作者
出处
发文年
被引量
操作
1
基于Kernel Discriminant Canonical Correlation(KDCC)的多观测样本分类算法
牛晓霞
胡正平
王玲丽
《数学的实践与认识》
CSCD
北大核心
2012
0
原文传递
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部