局部离群因子(LOF)是对过程数据的局部离群程度的定义,然而工业过程对数据异常检测的实时性要求高,要求出所有采样点的离群因子计算量较大。故本文对LOF算法进行相应的改进,采用k-近邻计算对象的局部可达密度,同时利用1种预处理采样点...局部离群因子(LOF)是对过程数据的局部离群程度的定义,然而工业过程对数据异常检测的实时性要求高,要求出所有采样点的离群因子计算量较大。故本文对LOF算法进行相应的改进,采用k-近邻计算对象的局部可达密度,同时利用1种预处理采样点的方法CDC(Closest Distance to Center),通过计算每个点到中心点的距离先对采样点进行修剪,剔除大部分不可能是离群点的采样点,只需要计算剩余点改进的LOF值,从而提高离群点检测的效率。最终通过对TE过程数据仿真,说明在保证离群点检测准确性的情况下,相比于LOF缩短了算法运行的时间。展开更多
文摘局部离群因子(LOF)是对过程数据的局部离群程度的定义,然而工业过程对数据异常检测的实时性要求高,要求出所有采样点的离群因子计算量较大。故本文对LOF算法进行相应的改进,采用k-近邻计算对象的局部可达密度,同时利用1种预处理采样点的方法CDC(Closest Distance to Center),通过计算每个点到中心点的距离先对采样点进行修剪,剔除大部分不可能是离群点的采样点,只需要计算剩余点改进的LOF值,从而提高离群点检测的效率。最终通过对TE过程数据仿真,说明在保证离群点检测准确性的情况下,相比于LOF缩短了算法运行的时间。