滑动轴承的声发射(Acoustic Emission,AE)信号噪声污染严重,限制了K均值奇异值分解(K-means Singular Value Decomposition,K-SVD)字典算法的降噪能力。基于此,结合AE信号特点,提出了基于多层多位置稀疏的滑动轴承AE信号降噪算法。首先...滑动轴承的声发射(Acoustic Emission,AE)信号噪声污染严重,限制了K均值奇异值分解(K-means Singular Value Decomposition,K-SVD)字典算法的降噪能力。基于此,结合AE信号特点,提出了基于多层多位置稀疏的滑动轴承AE信号降噪算法。首先提出移动标尺策略重构AE信号,使信号获得多层多位置的稀疏特性,解决了K-SVD容易忽略原子间隐藏信息的问题,然后通过灰色B型绝对关联度降低字典原子冗余度,提高字典运算速度。因此,与传统的K-SVD算法相比,该算法具有更好的降噪性能。应用到实例中,该算法成功获得了滑动轴承不同程度摩擦状态的变化,证明了该算法的有效性。展开更多
压缩感知理论将采样理论与压缩理论合二为一,成为最近几年来的研究热点。主要依据图像的稀疏性或是可压缩性的特点,使用K-均值奇异值分解(K-Means Singular Value Decomposition,K-SVD)算法训练获得过完备字典,使用高斯随机矩阵作为测...压缩感知理论将采样理论与压缩理论合二为一,成为最近几年来的研究热点。主要依据图像的稀疏性或是可压缩性的特点,使用K-均值奇异值分解(K-Means Singular Value Decomposition,K-SVD)算法训练获得过完备字典,使用高斯随机矩阵作为测量矩阵,最后通过正则化自适应匹配追踪算法作为压缩感知重构算法,提出了K-SVD过完备字典的正则化自适应匹配追踪算法(KSVD Regularized Adaptive Matching Pursuit,KSVD-RAMP)。通过对重构图像的峰值信噪比、重构时间、相对误差等客观评价指标以及主观视觉上对所提算法以及传统的贪婪算法做对比。实验结果表明,该算法比基于离散小波稀疏表示的RAMP算法的峰值信噪比提升了2~6 d B。因此,该算法重构出的图像不管在视觉效果上,还是在客观评价指标上都有一定的改善。展开更多
文摘滑动轴承的声发射(Acoustic Emission,AE)信号噪声污染严重,限制了K均值奇异值分解(K-means Singular Value Decomposition,K-SVD)字典算法的降噪能力。基于此,结合AE信号特点,提出了基于多层多位置稀疏的滑动轴承AE信号降噪算法。首先提出移动标尺策略重构AE信号,使信号获得多层多位置的稀疏特性,解决了K-SVD容易忽略原子间隐藏信息的问题,然后通过灰色B型绝对关联度降低字典原子冗余度,提高字典运算速度。因此,与传统的K-SVD算法相比,该算法具有更好的降噪性能。应用到实例中,该算法成功获得了滑动轴承不同程度摩擦状态的变化,证明了该算法的有效性。
文摘压缩感知理论将采样理论与压缩理论合二为一,成为最近几年来的研究热点。主要依据图像的稀疏性或是可压缩性的特点,使用K-均值奇异值分解(K-Means Singular Value Decomposition,K-SVD)算法训练获得过完备字典,使用高斯随机矩阵作为测量矩阵,最后通过正则化自适应匹配追踪算法作为压缩感知重构算法,提出了K-SVD过完备字典的正则化自适应匹配追踪算法(KSVD Regularized Adaptive Matching Pursuit,KSVD-RAMP)。通过对重构图像的峰值信噪比、重构时间、相对误差等客观评价指标以及主观视觉上对所提算法以及传统的贪婪算法做对比。实验结果表明,该算法比基于离散小波稀疏表示的RAMP算法的峰值信噪比提升了2~6 d B。因此,该算法重构出的图像不管在视觉效果上,还是在客观评价指标上都有一定的改善。