-
题名基于划分的数据挖掘K-means聚类算法分析
被引量:19
- 1
-
-
作者
曾俊
-
机构
长江师范学院大数据与智能工程学院
-
出处
《现代电子技术》
北大核心
2020年第3期14-17,共4页
-
基金
教育部“春晖”计划项目:物联网智能农业平台下大数据的初步应用(S2016038)
-
文摘
为提升数据挖掘中聚类分析的效果,在分析数据挖掘、聚类分析、传统K⁃means算法的基础上,提出一种改进的K⁃means算法。首先将整体数据集分为k类,然后设定一个密度参数为ϑ,该密度参数反映数据库中数据所处区域的密度大小,ϑ值与密度大小成正比,通过密度参数优化k个样本数据的聚类中心点选取;依据欧几里得距离公式对未选取的其他数据到各个聚类中心之间的距离进行计算,同时以此距离为判别标准,对各个数据进行种类划分,从而得到初始的聚类分布;初始聚类分布得到之后,对每一个分布簇进行再一次的中心点计算,并判断与之前所取中心点是否相同,直到其聚类收敛达到最优效果。最后通过葡萄酒数据集对改进算法进行验证分析,改进算法比传统K⁃means算法的聚类效果更优,能够更好地在数据挖掘当中进行聚类。
-
关键词
数据挖掘
聚类分析
k⁃means聚类算法
聚类中心选取
k⁃means算法改进
初始中心点
-
Keywords
data mining
clustering analysis
k⁃means clustering algorithm
clustering center selection
k⁃means algo⁃rithm improvement
initial center point
-
分类号
TN911.1-34
[电子电信—通信与信息系统]
-