Matrix metalloproteinases (MMPs) are matrix-degrading enzymes that are over-expressed in joints of rheumatoid arthritis (RA) patients. However, the contribution of specific MMPs for the development of arthritic joints...Matrix metalloproteinases (MMPs) are matrix-degrading enzymes that are over-expressed in joints of rheumatoid arthritis (RA) patients. However, the contribution of specific MMPs for the development of arthritic joints is unknown. This study is aimed at studying the role of matrix metalloproteinase-9 (MMP-9) in mice, using the K/BxN serum-transfer model of RA. Arthritis was induced in Balb/c mice by injecting K/BxN serum. Development of arthritis was followed in these mice by measuring ankle thickness and clinical index score. MMP-9 expression in the joints of mice killed at various time points during the disease progression was determined by gelatin zymography using ankle lysates. We found that MMP-9 expression increased with the severity of arthritis. Importantly MMP-9 deficient mice injected with K/BxN serum showed a milder form of arthritis in comparison to the control C57BL/6 mice injected with K/BxN serum. We therefore conclude that MMP-9 promotes arthritis in mice.展开更多
Introduction: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial hyperplasia and progressive cartilage and bone destruction that leads to a substantial loss of general functions and/or...Introduction: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial hyperplasia and progressive cartilage and bone destruction that leads to a substantial loss of general functions and/or a decline in physical activities such as walking speed in humans. The K/BxN serum transfer arthritis in mice shares many immunological and pathological features with human RA. Very few studies are available in mice that investigate the changes in physical activity in relation to arthritis development. In this study we investigate the effect of arthritis on the locomotor activity of mice during K/BxN sera transfer arthritis. Methods: Arthritis was induced in Balb/c mice by injecting intraperitoneally with 200 μl of K/BxN sera;Balb/c mice injected with phosphate buffered saline (PBS) served as control. Progress of arthritis was estimated by daily measurements of joint thickness. Each mouse’s locomotor activity (travel distance and travel time) was assessed every day for duration of 20 minute period using the SmartCageTM platform. Data were analyzed using the SmartCageTM analysis software (CageScoreTM). Results: Arthritic Balb/c mice showed a reduction in distance covered and travel speed when compared to arthritis-free, control Balb/c mice. Maximum decline in locomotor activity was observed during the peak period of the disease and correlated to the increase in joint thickness in the arthritic mice. Conclusion: This report demonstrates that measuring locomotor activity of mice during progression of K/BxN sera-induced arthritis using the SmartCageTM platform offers a quantitative method to assess physical activity in mice during arthritis.展开更多
文摘Matrix metalloproteinases (MMPs) are matrix-degrading enzymes that are over-expressed in joints of rheumatoid arthritis (RA) patients. However, the contribution of specific MMPs for the development of arthritic joints is unknown. This study is aimed at studying the role of matrix metalloproteinase-9 (MMP-9) in mice, using the K/BxN serum-transfer model of RA. Arthritis was induced in Balb/c mice by injecting K/BxN serum. Development of arthritis was followed in these mice by measuring ankle thickness and clinical index score. MMP-9 expression in the joints of mice killed at various time points during the disease progression was determined by gelatin zymography using ankle lysates. We found that MMP-9 expression increased with the severity of arthritis. Importantly MMP-9 deficient mice injected with K/BxN serum showed a milder form of arthritis in comparison to the control C57BL/6 mice injected with K/BxN serum. We therefore conclude that MMP-9 promotes arthritis in mice.
文摘Introduction: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial hyperplasia and progressive cartilage and bone destruction that leads to a substantial loss of general functions and/or a decline in physical activities such as walking speed in humans. The K/BxN serum transfer arthritis in mice shares many immunological and pathological features with human RA. Very few studies are available in mice that investigate the changes in physical activity in relation to arthritis development. In this study we investigate the effect of arthritis on the locomotor activity of mice during K/BxN sera transfer arthritis. Methods: Arthritis was induced in Balb/c mice by injecting intraperitoneally with 200 μl of K/BxN sera;Balb/c mice injected with phosphate buffered saline (PBS) served as control. Progress of arthritis was estimated by daily measurements of joint thickness. Each mouse’s locomotor activity (travel distance and travel time) was assessed every day for duration of 20 minute period using the SmartCageTM platform. Data were analyzed using the SmartCageTM analysis software (CageScoreTM). Results: Arthritic Balb/c mice showed a reduction in distance covered and travel speed when compared to arthritis-free, control Balb/c mice. Maximum decline in locomotor activity was observed during the peak period of the disease and correlated to the increase in joint thickness in the arthritic mice. Conclusion: This report demonstrates that measuring locomotor activity of mice during progression of K/BxN sera-induced arthritis using the SmartCageTM platform offers a quantitative method to assess physical activity in mice during arthritis.