期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
CEEMD与KSVD字典训练相结合的去噪方法 被引量:22
1
作者 乐友喜 杨涛 曾贤德 《石油地球物理勘探》 EI CSCD 北大核心 2019年第4期729-736,I0007,共9页
本文提出一种完备总体经验模态分解(CEEMD)方法与K奇异值分解(KSVD)学习字典算法相结合的地震信号去噪方法。含噪信号通过CEEMD分解得到一系列不同尺度的固有模态函数(IMF);按频率由高到低依次排列IMF各分量,并做自相关分析,去除噪声主... 本文提出一种完备总体经验模态分解(CEEMD)方法与K奇异值分解(KSVD)学习字典算法相结合的地震信号去噪方法。含噪信号通过CEEMD分解得到一系列不同尺度的固有模态函数(IMF);按频率由高到低依次排列IMF各分量,并做自相关分析,去除噪声主导的IMF分量;将累加的过渡IMF分量叠加重构并做CEEMD二次分解,通过自相关分析再次去除噪声主导的IMF分量;分别叠加二次CEEMD分解剩余的IMF分量和一次剩余的IMF分量,得到两个新的含噪信号,并利用KSVD过完备字典分别稀疏表示该两个新的含噪信号,即由稀疏系数重构去噪后地震信号,进而重构最终去噪结果。实验结果证明:该算法的去噪效果明显优于F-X去噪、小波阈值去噪和KSVD字典稀疏去噪等传统方法。 展开更多
关键词 完备总体经验模态分解 ksvd学习字典 稀疏表示 自相关 随机噪声
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部