期刊文献+
共找到105篇文章
< 1 2 6 >
每页显示 20 50 100
奇异值分解方法在日负荷曲线降维聚类分析中的应用 被引量:34
1
作者 陈烨 吴浩 +2 位作者 史俊祎 商佳宜 孙维真 《电力系统自动化》 EI CSCD 北大核心 2018年第3期105-111,共7页
负荷曲线聚类对负荷预测、电网规划和需求侧响应等应用有重要意义,但是海量的历史负荷曲线为数据存储和计算效率带来了挑战。为此,提出一种基于奇异值分解的日负荷曲线降维聚类方法。首先利用奇异值分解将日负荷曲线数据旋转变换至新的... 负荷曲线聚类对负荷预测、电网规划和需求侧响应等应用有重要意义,但是海量的历史负荷曲线为数据存储和计算效率带来了挑战。为此,提出一种基于奇异值分解的日负荷曲线降维聚类方法。首先利用奇异值分解将日负荷曲线数据旋转变换至新的坐标系中,求解出的奇异值反映了相应坐标轴的重要程度。然后,将负荷曲线在各坐标轴上的坐标作为降维指标,用以反映负荷曲线的主要特征,再依据奇异值下降趋势确定指标的数目。最后,以各坐标轴对应的奇异值作为指标权重,采用基于加权欧式距离的K-means算法对日负荷曲线进行聚类。算例结果表明所提方法运行时间短、鲁棒性好,可以提高负荷曲线聚类的准确性。 展开更多
关键词 日负荷曲线聚类 奇异值分解 降维聚类 k-MEANS算法 加权欧式距离 鲁棒性检验
下载PDF
基于VMD和K-SVD字典学习的供水管道泄漏振动信号压缩感知方法 被引量:25
2
作者 李帅永 毛维培 +2 位作者 程振华 韩明秀 夏传强 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第3期49-60,共12页
针对供水管道泄漏振动信号在分析型字典下进行压缩感知时,信号的重构均方误差较大和不能保留信号中重要泄漏信息的问题,提出了基于变分模态分解(VMD)和K-奇异值分解算法(K-SVD)的供水管道泄漏振动信号压缩感知方法。首先,利用VMD算法将... 针对供水管道泄漏振动信号在分析型字典下进行压缩感知时,信号的重构均方误差较大和不能保留信号中重要泄漏信息的问题,提出了基于变分模态分解(VMD)和K-奇异值分解算法(K-SVD)的供水管道泄漏振动信号压缩感知方法。首先,利用VMD算法将管道泄漏振动信号分解若干个本征模态函数(IMF),并对IMF分量进行互相关性分析;然后,选取最优模态分量,构成最优模态集,再借助K-SVD学习算法训练过完备字典;最后,选择高斯随机矩阵为观测矩阵和重构算法为正交匹配追踪算法(OMP)对管道泄漏振动信号进行压缩感知。实验结果表明,基于VMD-K-SVD稀疏表示构造的过完备字典的压缩感知方法与基于FFT正交基、DCT正交基、K-SVD的压缩感知方法相比,在压缩率为50%~89.5%下重构均方误差更小和互相关系数更高,且在相同压缩率下得到的重构信号的互相关延时估计定位误差的平均值分别降低80.12%、64.2%、61.38%。因此,所提的压缩感知方法具有较好的重构性能和稀疏性。 展开更多
关键词 管道泄漏 压缩感知 变分模态分解 k-奇异值分解 过完备字典
下载PDF
基于隐含语义的kNN文本分类研究 被引量:8
3
作者 李永平 程莉 叶卫国 《计算机工程与应用》 CSCD 北大核心 2004年第6期71-73,共3页
介绍了传统的kNN的文本分类方法,分析其实质,指出其不足,提出了一种基于隐含语义的改进方案,并结合实际给出实验结果。
关键词 kNN 奇异值分解 文本分类
下载PDF
基于局部优化奇异值分解和K-means聚类的协同过滤算法 被引量:15
4
作者 尹芳 宋垚 李骜 《南京理工大学学报》 EI CAS CSCD 北大核心 2019年第6期720-726,共7页
为了克服传统协同过滤(CF)推荐方法数据稀疏和可扩展性差的不足,该文提出1种基于局部优化降维和聚类的协同过滤算法。采用局部优化的奇异值分解(SVD)降维技术和K-均值(K-means)聚类技术对用户-项目评分矩阵中的相似用户进行聚类并降低... 为了克服传统协同过滤(CF)推荐方法数据稀疏和可扩展性差的不足,该文提出1种基于局部优化降维和聚类的协同过滤算法。采用局部优化的奇异值分解(SVD)降维技术和K-均值(K-means)聚类技术对用户-项目评分矩阵中的相似用户进行聚类并降低维度。利用近似差分矩阵表示评分矩阵的局部结构,实现局部优化。局部优化的SVD降维技术可以利用更少的迭代次数缓解CF中数据稀疏和算法可扩展性差的问题。K-means聚类技术可以缩小邻居集查找范围,提高推荐速度。将该文算法与基于Pearson相关系数的协同过滤算法、基于SVD的协同过滤算法、基于K-means聚类的协同过滤算法相比较。在MovieLens数据集上的实验结果表明,该算法的平均绝对误差(MAE)较其他算法降低了大约12%,准确性(Precision)提高了7%。 展开更多
关键词 局部优化 奇异值分解 k-均值聚类 协同过滤 近似差分矩阵
下载PDF
基于终止准则改进K-SVD字典学习的稀疏表示特征增强方法 被引量:14
5
作者 王华庆 任帮月 +2 位作者 宋浏阳 董方 王梦阳 《机械工程学报》 EI CAS CSCD 北大核心 2019年第7期35-43,共9页
针对传统K奇异值分解(K-Singular value decomposition, K-SVD)算法在稀疏表示过程中,由于目标信号稀疏度难以确定以及字典原子受噪声干扰大导致稀疏表示效果较差的问题,结合变分模态分解(Variational mode decomposition, VMD)算法,提... 针对传统K奇异值分解(K-Singular value decomposition, K-SVD)算法在稀疏表示过程中,由于目标信号稀疏度难以确定以及字典原子受噪声干扰大导致稀疏表示效果较差的问题,结合变分模态分解(Variational mode decomposition, VMD)算法,提出了基于VMD与终止准则改进K-SVD字典学习的稀疏表示方法。借助VMD算法剔除信号中的干扰分量,依据相关分析与峭度准则选择最优模态分量;采用终止准则改进的K-SVD字典学习算法对最优分量的特征信息进行学习,优化目标函数与约束条件,在无需设置稀疏度的前提下,构造出准确匹配故障冲击成分的字典;此外,构建一种残差阈值改进的正交匹配追踪算法(OMPerr)实现稀疏重构及微弱故障特征增强。通过仿真及试验信号进行验证,结果表明:基于VMD与改进K-SVD字典学习的稀疏表示方法在字典原子构建、稀疏重构精度以及故障特征增强等方面均优于传统K-SVD稀疏表示方法,可以有效实现微弱故障的诊断。 展开更多
关键词 稀疏表示 故障特征增强 k奇异值分解 特征提取
原文传递
基于主成分分析的字典学习 被引量:12
6
作者 余付平 冯有前 +1 位作者 范成礼 沈堤 《控制与决策》 EI CSCD 北大核心 2013年第7期1109-1112,共4页
在奇异值字典学习方法的基础上,结合主成分分析方法提出了主成分分析字典学习方法.该方法取代了奇异值分解(KSVD)方法中对误差项直接进行SVD分解来更新原子,取而代之的是通过对误差项进行PCA分解,提取其主成分作为字典中原子的更新.仿... 在奇异值字典学习方法的基础上,结合主成分分析方法提出了主成分分析字典学习方法.该方法取代了奇异值分解(KSVD)方法中对误差项直接进行SVD分解来更新原子,取而代之的是通过对误差项进行PCA分解,提取其主成分作为字典中原子的更新.仿真结果表明,与KSVD字典学习方法相比,所提出的方法字典学习效果更好,对训练样本的表达误差更小,学习字典更能表达训练样本的特征. 展开更多
关键词 -主成分分析 k奇异值分解 字典学习 稀疏表示
原文传递
一种结合上下文语义的短文本聚类算法 被引量:11
7
作者 张群 王红军 王伦文 《计算机科学》 CSCD 北大核心 2016年第S2期443-446,450,共5页
短文本因具有特征信息不足且高维稀疏等特点,使得传统文本聚类算法应用于短文本聚类任务时性能有限。针对上述情况,提出一种结合上下文语义的短文本聚类算法。首先借鉴社会网络分析领域的中心性和权威性思想设计了一种结合上下文语义的... 短文本因具有特征信息不足且高维稀疏等特点,使得传统文本聚类算法应用于短文本聚类任务时性能有限。针对上述情况,提出一种结合上下文语义的短文本聚类算法。首先借鉴社会网络分析领域的中心性和权威性思想设计了一种结合上下文语义的特征词权重计算方法,在此基础上构建词条-文本矩阵;然后对该矩阵进行奇异值分解,进一步将原始特征词空间映射到低维的潜在语义空间;最后通过改进的K-means聚类算法在低维潜在语义空间完成短文本聚类。实验结果表明,与传统的基于词频及逆向文档频权重的文本聚类算法相比,该算法能有效改善短文本特征不足及高维稀疏性,提高了短文的本聚类效果。 展开更多
关键词 短文本聚类 上下文语义 奇异值分解 k均值算法
下载PDF
利用核模糊聚类和正则化的图像稀疏去噪 被引量:7
8
作者 吴一全 李立 《光子学报》 EI CAS CSCD 北大核心 2014年第3期126-132,共7页
针对目前图像去噪方法噪音抑制不彻底、容易模糊细节等问题,提出了一种利用核模糊C均值聚类和正则化的图像稀疏去噪方法.该方法首先将图像分成大小相同的若干块,并采用核模糊C均值聚类算法对相似的图像块进行聚类,从而保证同一类图像块... 针对目前图像去噪方法噪音抑制不彻底、容易模糊细节等问题,提出了一种利用核模糊C均值聚类和正则化的图像稀疏去噪方法.该方法首先将图像分成大小相同的若干块,并采用核模糊C均值聚类算法对相似的图像块进行聚类,从而保证同一类图像块共享相同的稀疏去噪模型;然后,选择由经典图像库中图像训练而得的全局字典作为初始字典,很好地适应图像的多种特征;接着,对于同一类图像块,通过施加1/2范数正则化约束,实现该类图像块在字典下的稀疏分解,确保分解系数更为稀疏;最后,通过改进的K-奇异值分解算法完成字典的更新,并选择与原稀疏模型差异最大的图像块来替换更新字典的冗余原子,从而有效地去除图像噪音.实验结果表明,与小波扩散去噪法、固定字典去噪法、最优方向去噪法、K-奇异值分解去噪法相比,该方法能更有效地去除图像噪音,保留图像细节,改善图像视觉效果. 展开更多
关键词 图像处理 稀疏表示 图像去噪 核模糊C均值聚类 正则化 字典更新 k-奇异值分解
下载PDF
基于短时信号重构与K-SVD特征提取算法 被引量:7
9
作者 唐宁 童水光 +2 位作者 徐剑 从飞云 张依东 《机械设计与研究》 CSCD 北大核心 2018年第4期18-22,共5页
以故障信号局部包含信息的差异性为基础,通过短时奇异值分解算法来提取淹没与背景噪声中的故障冲击成分。再结合K-SVD稀疏分解训练算法,提出1种自适应学习字典构建方法,可以有效的自适应表征滚动轴承的故障信号。仿真和试验结果分析论... 以故障信号局部包含信息的差异性为基础,通过短时奇异值分解算法来提取淹没与背景噪声中的故障冲击成分。再结合K-SVD稀疏分解训练算法,提出1种自适应学习字典构建方法,可以有效的自适应表征滚动轴承的故障信号。仿真和试验结果分析论证表明,该故障特征提取技术较常规稀疏匹配算法具更好的识别和提取冲击故障特征能力,有助于实现滚动轴承故障智能诊断。 展开更多
关键词 奇异值分解 k-SVD 自适应学习字典 特征提取 滚动轴承
原文传递
基于残差的图像超分辨率重建 被引量:7
10
作者 陈华华 姜宝林 +3 位作者 刘超 陈伟强 陆宇 张嵩 《中国图象图形学报》 CSCD 北大核心 2013年第1期42-48,共7页
提出一种基于图像残差的超分辨率重建算法。以原高分辨率图像与插值放大后图像之间的图像残差与低分辨率图像样本特征作为样本对,对其进行K均值分类,并对每类样本对采用KSVD(K-singular value decomposi-tion)方法进行训练获得高、低分... 提出一种基于图像残差的超分辨率重建算法。以原高分辨率图像与插值放大后图像之间的图像残差与低分辨率图像样本特征作为样本对,对其进行K均值分类,并对每类样本对采用KSVD(K-singular value decomposi-tion)方法进行训练获得高、低分辨率字典对,然后根据测试样本与类中心的欧氏距离选择字典对,以与测试样本相近的多个类别所重建的结果加权获得图像残差,并结合低分辨率图像的插值结果获得高分辨率图像。实验结果表明,提出的方法具有更高的重建质量,且采用训练样本分类和相近类别的重建结果的加权和有利于提高图像重建质量。 展开更多
关键词 残差 超分辨率 字典 k奇异值分解(kSVD)
原文传递
LSI和kNN相结合的文本分类模型研究 被引量:3
11
作者 王天江 叶卫国 +1 位作者 卢正鼎 李永平 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第4期59-60,86,共3页
针对传统文本分类系统的不足 ,提出了一种基于隐含语义索引的kNN的文本分类模型 .该方法既充分利用了向量空间模型在表示方法上的巨大优势 ,又弥补了其忽略语义的不足 ,具备一定的理论和现实意义 .
关键词 文本分类 k最邻参照法 隐含语义索引 奇异值分解
下载PDF
基于改进的潜在语义分析的文本聚类 被引量:5
12
作者 宋涛 施水才 +1 位作者 房祥 吕学强 《北京信息科技大学学报(自然科学版)》 2012年第3期21-25,共5页
文本聚类中不同文本表示方法获得的聚类效果不尽相同。引入潜在语义分析模型对文本进行表示,重新给出了针对潜在语义分析的特征权重计算方法,并提出了截断奇异值分解中K值的选取方法,达到了"词-文本"空间的降维去噪目的。鉴于... 文本聚类中不同文本表示方法获得的聚类效果不尽相同。引入潜在语义分析模型对文本进行表示,重新给出了针对潜在语义分析的特征权重计算方法,并提出了截断奇异值分解中K值的选取方法,达到了"词-文本"空间的降维去噪目的。鉴于K-means算法中初始聚类中心选取具有一定的随机性,应用相似性初始聚类中心选取方法确定了K-means的初始聚类中心,避免了随机选取聚类中心对聚类效果的影响。基于改进的潜在语义分析方法极大的降低了文本空间的维度,经实验证明改进后的方法在聚类问题中聚类效果显著。 展开更多
关键词 潜在语义分析 权重计算 奇异值分解 k-MEANS 文本聚类
下载PDF
结合第二代Bandelet变换分块的字典学习图像去噪算法 被引量:5
13
作者 张真真 王建林 《计算机科学》 CSCD 北大核心 2018年第7期264-270,共7页
针对以往稀疏编码在图像去噪过程中存在的噪声残留和缺乏对图像的边缘与细节的本质特征的保护等问题,提出了一种结合第二代Bandelet变换分块的字典学习图像去噪算法,其更好地利用了图像的几何特性进行去噪。首先,通过第二代Bandelet变... 针对以往稀疏编码在图像去噪过程中存在的噪声残留和缺乏对图像的边缘与细节的本质特征的保护等问题,提出了一种结合第二代Bandelet变换分块的字典学习图像去噪算法,其更好地利用了图像的几何特性进行去噪。首先,通过第二代Bandelet变换可以灵活地根据图像几何流的正则性特征并能够自适应地获得图像的最稀疏表示来准确估计图像信息,并能自适应地选择最优的几何方向;然后,根据K-奇异值分解(K-Singular Value Decomposition,K-SVD)算法来训练学习字典;最后,通过四叉树分割对噪声图像进行自适应分块,从而去除噪声并保护图像的边缘与细节。实验结果表明,相比于其他学习字典,所提算法能更有效地保留图像的边缘特征与图像的精细结构。 展开更多
关键词 第二代BANDELET变换 图像去噪 k-奇异值分解 字典学习 四叉树分割
下载PDF
基于SVD-K-means算法的软扩频信号伪码序列盲估计 被引量:1
14
作者 张慧芝 张天骐 +1 位作者 方蓉 罗庆予 《系统工程与电子技术》 EI CSCD 北大核心 2024年第1期326-333,共8页
针对通信中软扩频信号伪码序列盲估计困难的问题,提出一种奇异值分解(singular value decomposition,SVD)和K-means聚类相结合的方法。该方法先对接收信号按照一倍伪码周期进行不重叠分段构造数据矩阵。其次对数据矩阵和相似性矩阵分别... 针对通信中软扩频信号伪码序列盲估计困难的问题,提出一种奇异值分解(singular value decomposition,SVD)和K-means聚类相结合的方法。该方法先对接收信号按照一倍伪码周期进行不重叠分段构造数据矩阵。其次对数据矩阵和相似性矩阵分别进行SVD完成对伪码序列集合规模数的估计、数据降噪、粗分类以及初始聚类中心的选取。最后通过K-means算法优化分类结果,得到伪码序列的估计值。该算法在聚类之前事先确定聚类数目,大大减少了迭代次数。同时实验结果表明,该算法在信息码元分组小于5 bit,信噪比大于-10 dB时可以准确估计出软扩频信号的伪码序列,性能较同类算法有所提升。 展开更多
关键词 软扩频信号 盲估计 奇异值分解 k-MEANS
下载PDF
基于灰色关联度k-近邻法的房性心律失常识别 被引量:5
15
作者 孙荣荣 汪源源 方祖祥 《航天医学与医学工程》 CAS CSCD 北大核心 2007年第3期193-197,共5页
目的研究用灰色理论的灰色关联度结合k-近邻法快速准确地识别窦性、房扑和房颤信号。方法将心电信号分成训练集和测试集,首先用多尺度小波将心电信号变换到时频域,然后提取小波系数矩阵的奇异值作为信号的特征向量,将所有训练样本的特... 目的研究用灰色理论的灰色关联度结合k-近邻法快速准确地识别窦性、房扑和房颤信号。方法将心电信号分成训练集和测试集,首先用多尺度小波将心电信号变换到时频域,然后提取小波系数矩阵的奇异值作为信号的特征向量,将所有训练样本的特征向量作为标准模板,求出测试样本特征向量与标准模板之间的灰关联系数,最后结合k-近邻法对测试样本做出判断。分别用MIT-BIH心律失常数据库和犬心外膜信号数据库来评价提出的基于灰关联度的k-近邻法识别心律失常信号的特异性、敏感性和准确率。结果实验结果表明:和常规灰关联度法、常规k-近邻法、BP神经网络相比,本方法对窦性、房扑和房颤信号有较好的识别性能,且具有识别速度快的优点。结论本方法不需要大量的训练样本,计算简单,能较准确快速地识别窦性、房扑和房颤信号,有望应用于治疗心律失常的可植入装置。 展开更多
关键词 房性心律失常 小波变换 奇异值分解 灰关联 k-近邻法
下载PDF
基于SSTFT与KSVD的异种材料FSW在线监测
16
作者 龙海威 张佳莹 +3 位作者 刘锐 孙屹博 魏晓 杨鑫华 《焊接学报》 EI CAS CSCD 北大核心 2024年第11期77-84,共8页
异种材料轻量化结构是航空航天、铁路、汽车等领域的关键技术和研究热点之一,搅拌摩擦焊(FSW)是连接异种材料的有效方法,由于异种材料物理和化学性质的不同,容易在焊接过程中产生缺陷.针对铝合金与碳纤维增强热塑性塑料(CFRTP)搅拌摩擦... 异种材料轻量化结构是航空航天、铁路、汽车等领域的关键技术和研究热点之一,搅拌摩擦焊(FSW)是连接异种材料的有效方法,由于异种材料物理和化学性质的不同,容易在焊接过程中产生缺陷.针对铝合金与碳纤维增强热塑性塑料(CFRTP)搅拌摩擦焊(FSW)缺陷监测提出了基于同步压缩短时傅立叶变换与K-奇异值分解(SSTFT-KSVD)在线监测方法.使用声发射(AE)信号实时监测FSW状态,利用同步压缩短时傅立叶变换(SSTFT)提取时频域特征,最后通过K-奇异值分解(KSVD)模型对焊接状态与焊接缺陷进行了分类.结果表明,AE信号频率成分集中在10 kHz,17 kHz,23 kHz和25 kHz 4个频段,熔核塌陷和表面擦伤缺陷发生时,23 kHz频段的功率分别转移到10 kHz,而表面擦伤发生时,25 kHz频段的功率转移到17 kHz.在缺陷预测方面,KSVD预测模型的平均准确率达到90%,响应时间达到10 ms量级,比神经网络快100倍.基于SSTFT-KSVD在线监测方法可以实现对Al-CFRTP异种材料的FSW快速监测. 展开更多
关键词 异种材料搅拌摩擦焊 声发射信号 同步压缩短时傅立叶变换 k-奇异值分解 在线监测
下载PDF
基于改进K-SVD字典学习算法的轴承故障信号特征处理
17
作者 曾少晶 杨波 《机械设计与研究》 CSCD 北大核心 2024年第2期147-150,157,共5页
轴承故障信号识别经常受到各种噪音的影响,传统K奇异值分解(K-Singular value decomposition, K-SVD)算法在稀疏表示中效果较差,通过终止准则对进K-SVD字典学习优化,设计了基于改进K-SVD稀疏表示的轴承微弱故障信号特征处理方法。将终... 轴承故障信号识别经常受到各种噪音的影响,传统K奇异值分解(K-Singular value decomposition, K-SVD)算法在稀疏表示中效果较差,通过终止准则对进K-SVD字典学习优化,设计了基于改进K-SVD稀疏表示的轴承微弱故障信号特征处理方法。将终止准则当作字典更新收敛条件,采取正交匹配追踪算法进行稀疏求解,以包络谱形式实施分析,达成对微弱故障特征的提取目标。仿真信号结果表明,添加噪声信号时域图难以对特征频率实施精准提取。通过改进K-SVD算法来学习该分量特征信息有着明显的冲击特征,通过重构误差的波动状况对更新收敛性验证。试验结果结果表明,故障特征频率被其它频率掩盖,导致故障状态难以被有效辨别。本文方法实现对微弱故障特征的高效提取,精准判断故障状态。 展开更多
关键词 轴承 稀疏表示 故障特征 k奇异值分解 终止准则
原文传递
基于金字塔技术的STL模型数字水印算法 被引量:4
18
作者 崔汉国 刘健鑫 李正民 《自动化学报》 EI CSCD 北大核心 2013年第6期852-860,共9页
为了确保STL(Stereo lithography)模型数据在网络传输过程中的安全、完整性,根据STL模型自身的特点,对模型进行了拓扑重建,在主成分分析(Primary component analysis,PCA)预处理的基础上,提出了基于金字塔技术建立STL模型数据空间索引算... 为了确保STL(Stereo lithography)模型数据在网络传输过程中的安全、完整性,根据STL模型自身的特点,对模型进行了拓扑重建,在主成分分析(Primary component analysis,PCA)预处理的基础上,提出了基于金字塔技术建立STL模型数据空间索引算法,对原始STL模型数据空间进行了划分和索引,结合奇异值分解的相关原理,提出了基于B+树K近邻查询的STL模型数字水印嵌入与提取算法.实验证明:本文算法不可见性较好,算法实现速度快,在盲检测下能够抵抗旋转、平移、均匀缩放、顶点重排序、简化、噪声、剪切等攻击,具有较好的鲁棒性. 展开更多
关键词 STL模型 数字水印 金字塔技术 奇异值分解 k近邻查询
下载PDF
基于奇异值分解的径向基函数神经网络的改进算法研究
19
作者 尤国桥 刘曼茜 柯宜龙 《计算数学》 CSCD 北大核心 2024年第4期501-515,共15页
径向基函数神经网络(RBFNN)可用于插值和分类预测,本文提出基于奇异值分解(SVD)技术来改进传统的RBFNN,从而极大地简化网络结构.具体来说,本文提出的方法能够实现隐藏层神经元的自动选取和优化,删除冗余的神经元,进而节省内存和计算成本... 径向基函数神经网络(RBFNN)可用于插值和分类预测,本文提出基于奇异值分解(SVD)技术来改进传统的RBFNN,从而极大地简化网络结构.具体来说,本文提出的方法能够实现隐藏层神经元的自动选取和优化,删除冗余的神经元,进而节省内存和计算成本.同时,我们将使用K折交叉验证法来确定径向基函数(RBF)中的径向参数ε,以保证算法精度.更重要的是,我们基于Halko等提出的近似SVD算法[2],逐行读取样本数据并实时处理,避免将所有样本数据一次性导入内存.所有的数值实验都表明,相比于传统的RBFNN,本文提出的算法在不损失计算精度的前提下,极大地提高了计算效率,并简化了RBFNN结构. 展开更多
关键词 径向基函数神经网络 奇异值分解 k折交叉验证 插值
原文传递
基于ELMD-SVD和Prony的谐波间谐波检测方法 被引量:3
20
作者 刘士绮 王雅静 +3 位作者 梅宇 张祥珂 施瑶 窦震海 《电气传动》 2022年第13期48-55,共8页
为了解决噪声干扰Prony算法提取谐波参数问题,提出了一种集成局部均值分解(ELMD)-奇异值分解(SVD)-Prony的谐波分析方法(ELMD-SVD-Prony)。首先采用ELMD分解含噪信号,对获得的一系列乘积函数(PF)采用K-L散度来确定含噪分量与有效分量之... 为了解决噪声干扰Prony算法提取谐波参数问题,提出了一种集成局部均值分解(ELMD)-奇异值分解(SVD)-Prony的谐波分析方法(ELMD-SVD-Prony)。首先采用ELMD分解含噪信号,对获得的一系列乘积函数(PF)采用K-L散度来确定含噪分量与有效分量之间的分界点,去除噪声分量并保留有效分量,对有效分量通过相空间重构Hankel矩阵,运用奇异值分解进行二次降噪并重构。最后将重构的信号与ELMD余项叠加得到去噪后的谐波信号,结合Prony算法检测谐波的频率、幅值与相位。仿真实验结果表明,该方法能有效降噪并提取谐波特征参数。 展开更多
关键词 集成局部均值分解 奇异值分解 PRONY算法 k-L散度 降噪 谐波检测
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部