Electrocatalytic nitrate reduction reaction is considered as a promising and sustainable method for ammonia synthesis.However,the selectivity and yield rate of ammonia are limited by the competitive hydrogen evolution...Electrocatalytic nitrate reduction reaction is considered as a promising and sustainable method for ammonia synthesis.However,the selectivity and yield rate of ammonia are limited by the competitive hydrogen evolution reaction and the complex eight-electron transfer process.Herein,we developed a(FeCoNiCu)Ox/CeO_(2)polymetallic oxide electrocatalyst for effective nitrate reduction to ammonia.The synergistic effects among the multiple elements in the electrocatalyst were clearly elucidated by comprehensive experiments.Specifically,Cu acted as the active site for reducing nitrate to nitrite,and Co facilitated the subsequent reduction of nitrite to ammonia,while Fe and Ni promoted water dissociation to provide protons.Furthermore,the incorporation of CeO_(2)increased the active surface area of(FeCoNiCu)Ox,resulting in an improved ammonia yield rate to meet industrial demands.Consequently,the(FeCoNiCu)Ox/CeO_(2)electrocatalyst achieved an ammonia current density of 382 mA cm^(-2)and a high ammonia yield rate of 30.3 mg h^(-1)cm^(-2)with a long-term stability.This work offers valuable insights for the future design of highly efficient multi-element electrocatalysts.展开更多
Spinel oxides,with the formula AB_(2)O_(4)(A and B represent metal ions)perform superior electrocatalytic characteristic when A and B are transition metals like Co,Fe,Mn,etc.Abundant researches have been attached to t...Spinel oxides,with the formula AB_(2)O_(4)(A and B represent metal ions)perform superior electrocatalytic characteristic when A and B are transition metals like Co,Fe,Mn,etc.Abundant researches have been attached to the structure designments while methods are often energy-intensive and inefficient.Here,we devised a universal strategy to achieve rapid synthesis of nanocrystalline spinel materials with multiple components(Co_(3)O_(4),Mn_(3)O_(4),CoMn_(2)O_(4)and CoFe_(2)O_(4)are as examples),where phase formation is within 15 s.Under the Joule-heating shock,a crack-break process of microcosmic phase transformation is observed by in-situ transmission electron microscopy.The half-wave potential values of Co_(3)O_(4)-JH,Mn_(3)O_(4)-JH,CoMn_(2)O_(4)-JH and CoFe_(2)O_(4)-JH in the electrocatalytic oxygen reduction reaction were 0.77,0.78,0.79 and 0.76,respectively.This suggests that the Joule heating is a fast and efficient method for the preparation of spinel oxide electrocatalysts.展开更多
Flow behavior was observed in a simplified model cavity of a multiphase High Level Liquid Waste (HLLW) reprocessing glass melter. Electrodes were set to generate Joule-heating flow in the cavity. A chaotic flow occurr...Flow behavior was observed in a simplified model cavity of a multiphase High Level Liquid Waste (HLLW) reprocessing glass melter. Electrodes were set to generate Joule-heating flow in the cavity. A chaotic flow occurred because the lower part of the cavity was heated while the top surface of the cavity was cooled. Downflow and upflow occurred alternately in cavities. The shape of the cavity was a sloping bottom cavity, which was similar in shape to the real glass melter. To know the flow behavior in the cavity, 1-D flow behavior and 2-D flow behavior were measured in an experiment and simulated by an original CFD code. In the sloping bottom cavity, chaotic flow occurred in the upper part of the cavity. In the case of the sloping bottom cavity which had the same set of electrodes as the glass melter, the effect of the downflow near the electrodes decreased. The same phenomena could be predicted in the melter. The experimental results were also used to validate the CFD code, which will be helpful for developing a multiphase Joule-heating flow predicting.展开更多
Aerogels have shown great potential as oil adsorbents but their application to the removal of microscale oil from water and their recycling remains problematic.The present work proposed a freeze-shaping method for fab...Aerogels have shown great potential as oil adsorbents but their application to the removal of microscale oil from water and their recycling remains problematic.The present work proposed a freeze-shaping method for fabricating carbon nanofiber aerogels(CNFAs)based on the direct use of one-dimensional(1D)carbon nanofibers(CNF)rather than carbonization of polymer aerogels.This technique greatly reduces volume shrinkage and increases the three-dimensional(3D)structural stability of the material.Carbon nanotubes(CNT)and gelatinized starch were incorporated in these aerogels as a conductive enhancement agent and binder,respectively,forming a“vine(CNT)-wrapped tree(CNF)”structure that improved mechanical and Joule-heating performance.The effects of glutaraldehyde added to aerogels as a crosslinking agent on mechanical properties and microstructure were also systematically investigated.The optimized CNFAs combined with low density,high porosity,good elasticity,and superior Joule-heating efficiency along with suitable adsorption capacity,excellent selectivity,and cycling stability.This material was able to selectively remove 87%and 92%of microscale acetone and dimethylformamide(DMF),respectively,from the water after nine cycles of adsorption and Joule-heating.The present work demonstrates a novel means of designing and fabricating a low shrinkage CNFA with outstanding Joule-heating performance having potential practical applications in the remediation of organic pollution.展开更多
In order to get the natural convection heat transfer mechanism of molten salt, the experimental investigation of natural convective heat transfer of LiNO3was studied after it was simulated by numerical calculation. Ex...In order to get the natural convection heat transfer mechanism of molten salt, the experimental investigation of natural convective heat transfer of LiNO3was studied after it was simulated by numerical calculation. Experiment was carried out on the nat-ural convection heat transfer of air and water around the fine wire using the method of Joule heating. The results showed that the natural convection heat transfer of air and water around the fine wire agreed well with Fand's correlation. Based on the aforementioned experiment, the natural convection heat transfer of molten salt LiNO3was studied by experiment and the same results were got. Therefore, the natural convection heat transfer of molten salt can be calculated by Fand's correlation, which takes into consideration the effect of viscosity dissipation.展开更多
太阳风向磁层-电离层(Magnetosphere and Ionosphere,MI)系统输入能量,而输入的能量随后在MI系统中消耗.本文从能量守恒原理出发,讨论太阳风-磁层-电离层(SMI)耦合过程中的能流路径和能量收支的定量关系.主要讨论9个问题:(1)太阳风向MI...太阳风向磁层-电离层(Magnetosphere and Ionosphere,MI)系统输入能量,而输入的能量随后在MI系统中消耗.本文从能量守恒原理出发,讨论太阳风-磁层-电离层(SMI)耦合过程中的能流路径和能量收支的定量关系.主要讨论9个问题:(1)太阳风向MI系统的能量输入,(2)MI系统对能量输入的响应,(3)环电流的能量消耗,(4)极区电离层焦耳加热的能量消耗,(5)极光粒子沉降的能量消耗,(6)磁尾能量的消耗、储存以及返回下游太阳风,(7)平静期间的能量积累与释放,(8)能量在不同能汇中的分配,(9)评价能量函数的准则和方法.展开更多
基金supported by the National Natural Science Foundation of China(51972223,52202279)the Natural Science Foundation of Tianjin(20JCYBJC01550)+2 种基金the National Industry-Education Integration Platform of Energy Storagethe Fundamental Research Funds for the Central Universitiesthe Haihe Laboratory of Sustainable Chemical Transformations。
文摘Electrocatalytic nitrate reduction reaction is considered as a promising and sustainable method for ammonia synthesis.However,the selectivity and yield rate of ammonia are limited by the competitive hydrogen evolution reaction and the complex eight-electron transfer process.Herein,we developed a(FeCoNiCu)Ox/CeO_(2)polymetallic oxide electrocatalyst for effective nitrate reduction to ammonia.The synergistic effects among the multiple elements in the electrocatalyst were clearly elucidated by comprehensive experiments.Specifically,Cu acted as the active site for reducing nitrate to nitrite,and Co facilitated the subsequent reduction of nitrite to ammonia,while Fe and Ni promoted water dissociation to provide protons.Furthermore,the incorporation of CeO_(2)increased the active surface area of(FeCoNiCu)Ox,resulting in an improved ammonia yield rate to meet industrial demands.Consequently,the(FeCoNiCu)Ox/CeO_(2)electrocatalyst achieved an ammonia current density of 382 mA cm^(-2)and a high ammonia yield rate of 30.3 mg h^(-1)cm^(-2)with a long-term stability.This work offers valuable insights for the future design of highly efficient multi-element electrocatalysts.
基金supported by the National Programs for NanoKey Project(No.2022YFA1504002)the National Natural Science Foundation of China(Nos.22121005,22020102002,and 21835004)the Fundamental Research Funds for the Central Universities,and Collaborative Innovation Center of Chemical Science and Engineering(Tianjin)。
文摘Spinel oxides,with the formula AB_(2)O_(4)(A and B represent metal ions)perform superior electrocatalytic characteristic when A and B are transition metals like Co,Fe,Mn,etc.Abundant researches have been attached to the structure designments while methods are often energy-intensive and inefficient.Here,we devised a universal strategy to achieve rapid synthesis of nanocrystalline spinel materials with multiple components(Co_(3)O_(4),Mn_(3)O_(4),CoMn_(2)O_(4)and CoFe_(2)O_(4)are as examples),where phase formation is within 15 s.Under the Joule-heating shock,a crack-break process of microcosmic phase transformation is observed by in-situ transmission electron microscopy.The half-wave potential values of Co_(3)O_(4)-JH,Mn_(3)O_(4)-JH,CoMn_(2)O_(4)-JH and CoFe_(2)O_(4)-JH in the electrocatalytic oxygen reduction reaction were 0.77,0.78,0.79 and 0.76,respectively.This suggests that the Joule heating is a fast and efficient method for the preparation of spinel oxide electrocatalysts.
文摘Flow behavior was observed in a simplified model cavity of a multiphase High Level Liquid Waste (HLLW) reprocessing glass melter. Electrodes were set to generate Joule-heating flow in the cavity. A chaotic flow occurred because the lower part of the cavity was heated while the top surface of the cavity was cooled. Downflow and upflow occurred alternately in cavities. The shape of the cavity was a sloping bottom cavity, which was similar in shape to the real glass melter. To know the flow behavior in the cavity, 1-D flow behavior and 2-D flow behavior were measured in an experiment and simulated by an original CFD code. In the sloping bottom cavity, chaotic flow occurred in the upper part of the cavity. In the case of the sloping bottom cavity which had the same set of electrodes as the glass melter, the effect of the downflow near the electrodes decreased. The same phenomena could be predicted in the melter. The experimental results were also used to validate the CFD code, which will be helpful for developing a multiphase Joule-heating flow predicting.
基金the“Chenguang Program”provided by the Shanghai Education Development Foundation and Shanghai Municipal Education Commission(No.18CG37)the National Natural Science Foundation of China(No.51703024)。
文摘Aerogels have shown great potential as oil adsorbents but their application to the removal of microscale oil from water and their recycling remains problematic.The present work proposed a freeze-shaping method for fabricating carbon nanofiber aerogels(CNFAs)based on the direct use of one-dimensional(1D)carbon nanofibers(CNF)rather than carbonization of polymer aerogels.This technique greatly reduces volume shrinkage and increases the three-dimensional(3D)structural stability of the material.Carbon nanotubes(CNT)and gelatinized starch were incorporated in these aerogels as a conductive enhancement agent and binder,respectively,forming a“vine(CNT)-wrapped tree(CNF)”structure that improved mechanical and Joule-heating performance.The effects of glutaraldehyde added to aerogels as a crosslinking agent on mechanical properties and microstructure were also systematically investigated.The optimized CNFAs combined with low density,high porosity,good elasticity,and superior Joule-heating efficiency along with suitable adsorption capacity,excellent selectivity,and cycling stability.This material was able to selectively remove 87%and 92%of microscale acetone and dimethylformamide(DMF),respectively,from the water after nine cycles of adsorption and Joule-heating.The present work demonstrates a novel means of designing and fabricating a low shrinkage CNFA with outstanding Joule-heating performance having potential practical applications in the remediation of organic pollution.
基金supported by the Beijing Natural Science Foundation(Grant No. 3132012)the National Basic Research Program of China("973" Program) (Grant No. 2010CB227103)Beijing Municipal Science and Technology Commission of Science and Technology Plan(Grant No. D121100001012002)
文摘In order to get the natural convection heat transfer mechanism of molten salt, the experimental investigation of natural convective heat transfer of LiNO3was studied after it was simulated by numerical calculation. Experiment was carried out on the nat-ural convection heat transfer of air and water around the fine wire using the method of Joule heating. The results showed that the natural convection heat transfer of air and water around the fine wire agreed well with Fand's correlation. Based on the aforementioned experiment, the natural convection heat transfer of molten salt LiNO3was studied by experiment and the same results were got. Therefore, the natural convection heat transfer of molten salt can be calculated by Fand's correlation, which takes into consideration the effect of viscosity dissipation.
文摘太阳风向磁层-电离层(Magnetosphere and Ionosphere,MI)系统输入能量,而输入的能量随后在MI系统中消耗.本文从能量守恒原理出发,讨论太阳风-磁层-电离层(SMI)耦合过程中的能流路径和能量收支的定量关系.主要讨论9个问题:(1)太阳风向MI系统的能量输入,(2)MI系统对能量输入的响应,(3)环电流的能量消耗,(4)极区电离层焦耳加热的能量消耗,(5)极光粒子沉降的能量消耗,(6)磁尾能量的消耗、储存以及返回下游太阳风,(7)平静期间的能量积累与释放,(8)能量在不同能汇中的分配,(9)评价能量函数的准则和方法.