期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
基于深度学习的实体关系联合抽取研究综述 被引量:3
1
作者 张仰森 刘帅康 +2 位作者 刘洋 任乐 辛永辉 《电子学报》 EI CAS CSCD 北大核心 2023年第4期1093-1116,共24页
实体关系抽取是信息抽取领域的核心任务.从文本中抽取的实体关系三元组是构建大规模知识图谱的基础.传统的流水线方法将实体关系抽取分解为独立的命名实体识别和关系抽取两个子任务.首先,构建一个高效的命名实体识别器,从大规模非结构... 实体关系抽取是信息抽取领域的核心任务.从文本中抽取的实体关系三元组是构建大规模知识图谱的基础.传统的流水线方法将实体关系抽取分解为独立的命名实体识别和关系抽取两个子任务.首先,构建一个高效的命名实体识别器,从大规模非结构化文本语句中识别实体边界和类型.然后,将该命名实体识别器识别的实体与类型作为关系抽取任务中所用数据的标注.最后,通过关系抽取器得到两个实体之间的关系类别,进而组合成为结构化的实体关系三元组.命名实体识别任务存在的误差会影响后续的关系抽取任务的性能,这使得流水线方法具有错误累积问题.这是因为关系抽取任务中使用的标注数据来自于前面的命名实体识别任务,这会有一定的误差,进而影响关系抽取的结果质量.此外,流水线方法减弱了两个子任务之间的特征关联,这会出现冗余实体的问题.命名实体识别任务和关系抽取任务独立进行学习训练,导致这两个子任务间缺乏交互,使得文本信息没有得到充分利用,限制了流水线方法的性能瓶颈.由于非结构化文本信息没有得到充分利用,流水线方法在抽取实体间长依赖关系时具有一定局限性,很难达到联合抽取模型的性能指标.实际应用中,实体间往往存在多种关系,流水线方法无法充分使用全局文本信息,且命名实体识别会产生冗余实体,在抽取多元重叠关系时,该方法具有一定的局限性.因此,在构建高准确率实体关系抽取模型时,流水线方法具有欠缺之处.本文对实体关系联合抽取的研究发展全景进行了综述,简要阐明整数线性规划、卡片金字塔解析模型、概率图模型和结构化预测模型这四类基于特征工程的联合模型的共同缺点.本文聚焦基于深度学习的实体关系联合抽取技术,根据近年来实体关系联合抽取前沿研究成果,总结了实体关系联合抽取模� 展开更多
关键词 信息抽取 知识图谱 深度学习 实体关系联合抽取 流水线方法
下载PDF
一种面向中医文本的实体关系深度学习联合抽取方法 被引量:2
2
作者 杨延云 杜建强 +2 位作者 聂斌 罗计根 贺佳 《计算机应用与软件》 北大核心 2023年第3期217-222,234,共7页
目前实体识别和关系抽取任务大多采用流水线方式,但该方法存在错误累积、忽略两个任务相关性和信息冗余等诸多问题。结合中医文本的特点,提出一种基于深度学习的中医实体关系联合抽取方法。该方法使用改进的序列标注策略,将中医的实体... 目前实体识别和关系抽取任务大多采用流水线方式,但该方法存在错误累积、忽略两个任务相关性和信息冗余等诸多问题。结合中医文本的特点,提出一种基于深度学习的中医实体关系联合抽取方法。该方法使用改进的序列标注策略,将中医的实体关系联合抽取转换成序列标注任务,词向量与字符向量并联拼接作为双向LSTM-CRF输入,利用双向LSTM神经网络强大的特征提取能力,以及CRF在序列标注上的突出优势,结合优化的抽取规则完成中医实体关系联合抽取。在中医语料库上的实验结果表明,实体关系联合抽取的F1值可以达到80.42%,与传统流水线方法以及其他方法相比,实验效果更佳。 展开更多
关键词 实体关系联合抽取 深度学习 字词向量拼接 中医文本
下载PDF
基于多头自注意力机制和对抗训练的实体关系联合抽取
3
作者 甘雨金 李红军 +3 位作者 唐小川 王子怡 甘晨灼 胡正浩 《成都理工大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第3期513-521,共9页
实体关系联合抽取是构建知识图谱的重要阶段,旨在抽取文本中存在语义关系的实体对。针对已有的实体关系联合抽取方法在抽取过程中存在的冗余关系预测、实体关系重叠以及上下文潜在语义信息捕捉不足的问题,提出联合多头自注意力机制和对... 实体关系联合抽取是构建知识图谱的重要阶段,旨在抽取文本中存在语义关系的实体对。针对已有的实体关系联合抽取方法在抽取过程中存在的冗余关系预测、实体关系重叠以及上下文潜在语义信息捕捉不足的问题,提出联合多头自注意力机制和对抗训练的方法进行实体关系的抽取。该方法利用多头自注意力机制捕获潜在语义特征,以提升模型对上下文语义信息的感知能力;将对抗训练引入模型的训练阶段,以增强模型的泛化能力和鲁棒性。实验结果表明:与现有主流模型对比,提出的模型在NYT和WebNLG两个公共数据集上都取得了更优的F 1值,在处理实体关系重叠问题以及不定数量三元组抽取上都能保持稳定的性能表现,验证了模型的有效性。 展开更多
关键词 实体关系联合抽取 对抗训练 多头自注意力 知识图谱
下载PDF
面向退役机电产品全生命周期的知识图谱统一建模方法研究 被引量:1
4
作者 吴秀丽 马隆洲 +1 位作者 向东 唐英 《机械工程学报》 EI CAS CSCD 北大核心 2023年第7期52-67,共16页
针对退役机电产品逆向物流信息追溯过程中时空分散度高、质量不确定性强、跨组织信息关联度弱等问题,基于知识图谱技术构建了退役机电产品全生命周期统一数据模型。首先提出了从跨组织多源数据到知识图谱构建和应用的全生命周期统一数... 针对退役机电产品逆向物流信息追溯过程中时空分散度高、质量不确定性强、跨组织信息关联度弱等问题,基于知识图谱技术构建了退役机电产品全生命周期统一数据模型。首先提出了从跨组织多源数据到知识图谱构建和应用的全生命周期统一数据建模方法,然后提出了知识图谱构建关键技术,针对知识图谱构建过程中的实体关系联合抽取问题,建立了基于分段注意力融合机制的实体关系联合抽取模型,解决了实体关系重叠问题,并在标准数据集和退役机电产品领域数据集上进行测试,取得了很好的效果,最后建立了退役机电产品全生命周期信息追溯系统。知识图谱的构建实现了退役机电产品生命周期中跨组织信息的统一数据结构,为退役机电产品逆向物流信息追溯提供了强有力的支撑。 展开更多
关键词 退役机电产品 全生命周期信息追溯 统一数据模型 知识图谱 实体关系联合抽取
原文传递
融合FGM和指针标注的实体关系联合抽取方法
5
作者 刘玉鹏 葛艳 +1 位作者 杜军威 陈卓 《计算机与现代化》 2023年第11期1-5,12,共6页
实体关系联合抽取是信息抽取的一项重要任务。由于传统的实体关系联合抽取方法把实体之间的关系建模为离散类型,因此不能很好地解决重叠三元组的问题。为了解决难以抽取重叠三元组的问题,本文提出一种融合FGM和指针标注的实体关系联合抽... 实体关系联合抽取是信息抽取的一项重要任务。由于传统的实体关系联合抽取方法把实体之间的关系建模为离散类型,因此不能很好地解决重叠三元组的问题。为了解决难以抽取重叠三元组的问题,本文提出一种融合FGM和指针标注的实体关系联合抽取BERT-FGM模型。该模型将实体之间的关系建模为函数,通过在BERT训练词向量的过程中融入FGM提高模型的鲁棒性。模型首先通过指针标注策略抽取头实体,然后将头实体与句子向量进行融合作为一个新向量,最终将其在预定义的关系条件下抽取头实体对应的尾实体。实验使用的是公开数据集WebNLG,实验结果表明该模型F1值达到90.7%,有效地解决了三元组重叠问题。 展开更多
关键词 实体关系联合抽取 重叠三元组 BERT FGM 指针标注
下载PDF
基于实体跨度和本地信息的实体关系联合抽取
6
作者 王艳 方贤进 《阜阳师范大学学报(自然科学版)》 2023年第2期49-57,98,共10页
实体关系抽取是信息抽取、自然语言理解、信息检索等领域的核心任务。针对现有方法中存在的仅关注于准确识别实体而无法识别实体间多个关系等问题,本文提出基于实体跨度和本地信息的实体关系联合抽取模型,分割文本形成文本跨度块进行实... 实体关系抽取是信息抽取、自然语言理解、信息检索等领域的核心任务。针对现有方法中存在的仅关注于准确识别实体而无法识别实体间多个关系等问题,本文提出基于实体跨度和本地信息的实体关系联合抽取模型,分割文本形成文本跨度块进行实体识别;对所有候选实体跨度,融合其本地信息进行组合配对后,采用双仿射机制进行关系判定。在CoNLL04、ADE和ACE05等数据集上实验表明,该方法在多个评价指标上均取得较好的性能。 展开更多
关键词 实体关系联合抽取 本地信息 实体跨度
下载PDF
融合BERT-WWM和指针网络的旅游知识图谱构建研究 被引量:8
7
作者 徐春 李胜楠 《计算机工程与应用》 CSCD 北大核心 2022年第12期280-288,共9页
针对旅游信息呈现出散乱、无序和关联性不强的问题,提出一种融合BERT-WWM(BERT with whole word masking)和指针网络的实体关系联合抽取模型构建旅游知识图谱。借助BERT-WWM预训练语言模型从爬取的旅游评论中获得含有先验语义知识的句... 针对旅游信息呈现出散乱、无序和关联性不强的问题,提出一种融合BERT-WWM(BERT with whole word masking)和指针网络的实体关系联合抽取模型构建旅游知识图谱。借助BERT-WWM预训练语言模型从爬取的旅游评论中获得含有先验语义知识的句子编码。针对传统的实体关系抽取方法存在错误传播、实体冗余、交互缺失等问题,以及旅游评论中的实体关系存在一词多义、关系重叠等特征,提出直接对三元组建模,利用句子编码抽取头实体,根据关系类别抽取尾实体,并建立级联结构和指针网络解码输出三元组。基于Neo4j图数据库存储三元组构建旅游知识图谱。实验在建立的旅游数据集上进行,融合BERT-WWM与指针网络的实体关系联合抽取模型的准确率、召回率和F1值分别为93.42%、86.59%和89.88%,与现有模型相比三项指标均显示出优越性,验证了该方法进行实体关系联合抽取的有效性。构建的旅游知识图谱实现了旅游景区信息的整合与存储,对进一步促进旅游业发展具有一定的实际参考意义。 展开更多
关键词 BERT-WWM 指针网络 旅游知识图谱 关系重叠 实体关系联合抽取
下载PDF
词嵌入BERT-CRF玉米育种实体关系联合抽取方法 被引量:1
8
作者 李书琴 庞文婷 《农业机械学报》 EI CAS CSCD 北大核心 2023年第11期286-294,共9页
针对玉米育种文本数据中存在重叠三元组、实体表达方式多样等问题,提出一种嵌入词汇信息的BERT-CRF(Bidirectional encoder representations from transformers-conditional random field)玉米育种实体关系联合抽取方法。首先,分析了玉... 针对玉米育种文本数据中存在重叠三元组、实体表达方式多样等问题,提出一种嵌入词汇信息的BERT-CRF(Bidirectional encoder representations from transformers-conditional random field)玉米育种实体关系联合抽取方法。首先,分析了玉米育种语料表达特征,采用对实体边界、关系类别和实体位置信息同步标注的策略;其次,构建了嵌入词汇信息的BERT-CRF模型进行训练和预测,自建玉米育种知识词典,通过在BERT中嵌入词汇信息,融合字符特征和词汇特征,增强模型的语义能力,利用CRF模型输出全局最优标签序列,设计了实体关系三元组匹配算法(Entity and relation triple matching algorithm,ERTM),将标签进行匹配和映射来获取三元组;最后,为验证该方法的有效性,在玉米育种数据集上进行实验,结果表明,本文模型精确率、召回率和F1值分别为91.84%、95.84%、93.80%,与现有模型相比性能均有提升。说明该方法能够有效抽取玉米育种领域知识,为构建玉米育种知识图谱及其它下游任务提供数据基础。 展开更多
关键词 玉米育种 实体关系联合抽取 序列标注 BERT语言模型 词嵌入
下载PDF
语义与句法信息加强的二元标记实体关系联合抽取 被引量:3
9
作者 衡红军 苗菁 《计算机工程》 CAS CSCD 北大核心 2023年第4期77-84,共8页
随着互联网技术不断地发展,数据信息呈爆炸性增长,迫切需要从海量数据中高效地提取关键信息,而实体关系抽取作为信息抽取的核心任务,发挥着不可替代的重要作用。现有基于深度学习的实体关系抽取方法存在误差累积、实体冗余、交互缺失、... 随着互联网技术不断地发展,数据信息呈爆炸性增长,迫切需要从海量数据中高效地提取关键信息,而实体关系抽取作为信息抽取的核心任务,发挥着不可替代的重要作用。现有基于深度学习的实体关系抽取方法存在误差累积、实体冗余、交互缺失、实体关系重叠等问题。为充分利用语句的语义信息和句法信息,提出一种加强语义信息与句法信息的二元标记实体关系联合抽取模型SSERel。通过对输入文本进行BERT编码,并对三元组主体的开始位置和结束位置进行预测标记,提取文本的全局语义特征、主体与每个词语的局部语义特征以及句法特征,并将其融合进编码向量。对语句每种关系的客体位置进行预测标记,最终完成三元组的提取。在NYT和WebNLG数据集上的实验结果表明,相比CasRel模型,该模型的F1值分别提升2.7和1.4个百分点,能够有效解决复杂数据中存在的重叠三元组和多三元组等问题。 展开更多
关键词 信息抽取 实体关系联合抽取 语义信息 句法依存分析 图卷积神经网络
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部