Variable Stiffness Actuation(VSA)is an efficient,safe,and robust actuation technology for bionic robotic joints that have emerged in recent decades.By introducing a variable stiffness elastomer in the actuation system...Variable Stiffness Actuation(VSA)is an efficient,safe,and robust actuation technology for bionic robotic joints that have emerged in recent decades.By introducing a variable stiffness elastomer in the actuation system,the mechanical-electric energy conversion between the motor and the load could be adjusted on-demand,thereby improving the performance of the actuator,such as the peak power reduction,energy saving,bionic actuation,etc.At present,the VSA technology has achieved fruitful research results in designing the actuator mechanism and the stiffness adjustment servo,which has been widely applied in articulated robots,exoskeletons,prostheses,etc.However,how to optimally control the stiffness of VSAs in different application scenarios for better actuator performance is still challenging,where there is still a lack of unified cognition and viewpoints.Therefore,from the perspective of optimal VSA performance,this paper first introduces some typical structural design and servo control techniques of common VSAs and then explains the methods and applications of the Optimal Variable Stiffness Control(OVSC)approaches by theoretically introducing different types of OVSC mathematical models and summarizing OVSC methods with varying optimization goals and application scenarios or cases.In addition,the current research challenges of OVSC methods and possible innovative insights are also presented and discussed in-depth to facilitate the future development of VSA control.展开更多
The pneumatic gripper in industrial applications has the advantages of structure simplicity and great adaptability,but its gripping power is usually limited due to the low modulus of soft materials.To address this pro...The pneumatic gripper in industrial applications has the advantages of structure simplicity and great adaptability,but its gripping power is usually limited due to the low modulus of soft materials.To address this problem,a novel bionic pneumatic gripper inspired by spider legs is proposed.The design has two pairs of symmetrical fingers,each finger consists of two pneumatic actuated joints,two rigid links and one pneumatic soft pad.The rigid link connects the pneumatic chamber which is enclosed in a retractable shell to increase the actuation pressure and the gripping force.The compressibility and elasticity of the soft joint and pad enable the gripper to grasp fragile objects without damage.The modeling of the bionic gripper is developed,and the parameters of the joint actuators are optimized accordingly.The prototype is manufactured and tested with the developed experimental platform,where the gripping force,flexibility and adaptability are evaluated.The results indicate that the designed gripper can grasp irregular and fragile items in sizes from 40 to 140 mm without damage,and the lifting weight is up to 15 N.展开更多
提出一种采用石墨自润滑球铰连接的立方体构型Stewart隔振平台,6个支腿通过可转动的球铰与基础及载荷平台相连,每个支腿由音圈作动器与力传感器构成。在假设各支腿、基础及载荷平台均为弹性体的基础上,采用子结构频响函数综合法对Stewar...提出一种采用石墨自润滑球铰连接的立方体构型Stewart隔振平台,6个支腿通过可转动的球铰与基础及载荷平台相连,每个支腿由音圈作动器与力传感器构成。在假设各支腿、基础及载荷平台均为弹性体的基础上,采用子结构频响函数综合法对Stewart隔振平台进行动力学建模,并通过FEM方法进行验证,给出内嵌反馈控制的隔振平台模型,对反馈控制效果进行仿真验证;在仿真分析的基础上,对隔振平台的被动隔振性能和内嵌反馈控制的主动隔振性能进行实验。结果表明,被动隔振在30~200 Hz频段内具有约-36 d B/dec的衰减率,主动隔振在3~100 Hz频段内可获得最大20 d B的幅值衰减,<200 Hz,支腿力RMS值控制后下降75%~80%。展开更多
ype-1 fuzzy sets cannot fully handle the uncertainties. To overcome the problem, type2 fuzzy sets have been proposed. The novelty of this paper is using interval type-2 fuzzy logic controller (IT2FLC) to control a f...ype-1 fuzzy sets cannot fully handle the uncertainties. To overcome the problem, type2 fuzzy sets have been proposed. The novelty of this paper is using interval type-2 fuzzy logic controller (IT2FLC) to control a flexible-joint robot with voltage control strategy. In order to take into account the whole robotic system including the dynamics of actuators and the robot manipulator, the voltages of motors are used as inputs of the system. To highlight the capabilities of the control system, a flexible joint robot which is highly nonlinear, heavily coupled and uncertain is used. In addition, to improve the control performance, the parameters of the primary membership functions of IT2FLC are optimized using particle swarm optimization (PSO). A comparative study between the proposed IT2FLC and type-1 fuzzy logic controller (T1FLC) is presented to better assess their respective performance in presence of external disturbance and unmodelled dynamics. Stability analysis is presented and the effectiveness of the proposed control approach is demonstrated by simulations using a two-link flexible-joint robot driven by permanent magnet direct current motors. Simulation results show the superiority of the IT2FLC over the T1FLC in terms of accuracy, robustness and interpretability.展开更多
基金National Key Research and Development Program of China[Grant No.2020YFB1313000]National Natural Science Foundation of China[Grant No.62003060,62101086,51975070]+2 种基金China Postdoctoral Science Foundation[2021M693769]Natural Science Foundation of Chongqing,China[Grant No.cstc2021jcyj-bsh0180]Scientific and Technological Research Program of Chongqing Municipal Education Commission[Grant No.KJQN202100648].
文摘Variable Stiffness Actuation(VSA)is an efficient,safe,and robust actuation technology for bionic robotic joints that have emerged in recent decades.By introducing a variable stiffness elastomer in the actuation system,the mechanical-electric energy conversion between the motor and the load could be adjusted on-demand,thereby improving the performance of the actuator,such as the peak power reduction,energy saving,bionic actuation,etc.At present,the VSA technology has achieved fruitful research results in designing the actuator mechanism and the stiffness adjustment servo,which has been widely applied in articulated robots,exoskeletons,prostheses,etc.However,how to optimally control the stiffness of VSAs in different application scenarios for better actuator performance is still challenging,where there is still a lack of unified cognition and viewpoints.Therefore,from the perspective of optimal VSA performance,this paper first introduces some typical structural design and servo control techniques of common VSAs and then explains the methods and applications of the Optimal Variable Stiffness Control(OVSC)approaches by theoretically introducing different types of OVSC mathematical models and summarizing OVSC methods with varying optimization goals and application scenarios or cases.In addition,the current research challenges of OVSC methods and possible innovative insights are also presented and discussed in-depth to facilitate the future development of VSA control.
基金supported by the National Natural Science Foundation of China (52175100,51975394)the Natural Science Foundation of Jiangsu Province (BK20211336).
文摘The pneumatic gripper in industrial applications has the advantages of structure simplicity and great adaptability,but its gripping power is usually limited due to the low modulus of soft materials.To address this problem,a novel bionic pneumatic gripper inspired by spider legs is proposed.The design has two pairs of symmetrical fingers,each finger consists of two pneumatic actuated joints,two rigid links and one pneumatic soft pad.The rigid link connects the pneumatic chamber which is enclosed in a retractable shell to increase the actuation pressure and the gripping force.The compressibility and elasticity of the soft joint and pad enable the gripper to grasp fragile objects without damage.The modeling of the bionic gripper is developed,and the parameters of the joint actuators are optimized accordingly.The prototype is manufactured and tested with the developed experimental platform,where the gripping force,flexibility and adaptability are evaluated.The results indicate that the designed gripper can grasp irregular and fragile items in sizes from 40 to 140 mm without damage,and the lifting weight is up to 15 N.
文摘提出一种采用石墨自润滑球铰连接的立方体构型Stewart隔振平台,6个支腿通过可转动的球铰与基础及载荷平台相连,每个支腿由音圈作动器与力传感器构成。在假设各支腿、基础及载荷平台均为弹性体的基础上,采用子结构频响函数综合法对Stewart隔振平台进行动力学建模,并通过FEM方法进行验证,给出内嵌反馈控制的隔振平台模型,对反馈控制效果进行仿真验证;在仿真分析的基础上,对隔振平台的被动隔振性能和内嵌反馈控制的主动隔振性能进行实验。结果表明,被动隔振在30~200 Hz频段内具有约-36 d B/dec的衰减率,主动隔振在3~100 Hz频段内可获得最大20 d B的幅值衰减,<200 Hz,支腿力RMS值控制后下降75%~80%。
文摘ype-1 fuzzy sets cannot fully handle the uncertainties. To overcome the problem, type2 fuzzy sets have been proposed. The novelty of this paper is using interval type-2 fuzzy logic controller (IT2FLC) to control a flexible-joint robot with voltage control strategy. In order to take into account the whole robotic system including the dynamics of actuators and the robot manipulator, the voltages of motors are used as inputs of the system. To highlight the capabilities of the control system, a flexible joint robot which is highly nonlinear, heavily coupled and uncertain is used. In addition, to improve the control performance, the parameters of the primary membership functions of IT2FLC are optimized using particle swarm optimization (PSO). A comparative study between the proposed IT2FLC and type-1 fuzzy logic controller (T1FLC) is presented to better assess their respective performance in presence of external disturbance and unmodelled dynamics. Stability analysis is presented and the effectiveness of the proposed control approach is demonstrated by simulations using a two-link flexible-joint robot driven by permanent magnet direct current motors. Simulation results show the superiority of the IT2FLC over the T1FLC in terms of accuracy, robustness and interpretability.