2-D crustal structure and velocity ratio are obtained by processing S-wave data from two wide-angle reflec-tion/refraction profiles in and around Jiashi in northeastern Pamir, with the result of P-wave data taken into...2-D crustal structure and velocity ratio are obtained by processing S-wave data from two wide-angle reflec-tion/refraction profiles in and around Jiashi in northeastern Pamir, with the result of P-wave data taken into con-sideration. The result shows that: 1) Average crustal velocity ratio is obviously higher in Tarim block than in West Kunlun Mts. and Tianshan fold zone, which reflects its crustal physical property of 'hardness' and stability. The relatively low but normai velocity ratio (Poisson's ratio) of the lower crust indicates that the 'downward thrusting' of Tarim basin is the main feature of crustal movement in this area. 2) The rock layer in the upper crust of Tianshan fold zone is relatively 'soft', which makes it prone to rupture and stress energy release. This is the primary tectonic factor for the concentration of small earthquakes in this area. 3) Jiashi is located right over the apex or the inflection point of the updoming lower crustal interface C and the crust-mantle boundary, which is the deep struc-tural background for the occurrence of strong earthquakes. The alternate variation of vp/vs near the block bounda-ries and the complicated configuration of the interfaces in the upper and middie part of the upper crust form a par-ticular structural environment for the Jiashi strong earthquake swarm. vp/vs is comparatively high and shear modulus is low at the focal region, which may be the main reason for the low stress drop of the Jiashi strong earthquake swarm.展开更多
A three-dimensional temporary seismic transmission array was arranged in a 50x60 km2 region around Jiashi strong earthquake swarm to receive seismic waves generated by 8 fires from different azimuths. With the inversi...A three-dimensional temporary seismic transmission array was arranged in a 50x60 km2 region around Jiashi strong earthquake swarm to receive seismic waves generated by 8 fires from different azimuths. With the inversion method without model blocks and using P and S reflections from Moho at critical distances, the 3-D images of P, S velocity perturbation and ratio vP/vS perturbation of the upper crust under the seismic array were reconstructed. Meanwhile, the seismicity of the Jiashi earthquake swarm was taken into consideration in the analysis of the seismogenesis. The results indicate that the upper crustal structure under the Jiashi strong earthquake swarm region is characterized by significant inhomogeneity both laterally and vertically. From 12 km depth, it is clear that there is an NNW-oriented high P-wave velocity anomalous body corresponding to the epicenter of the swarm with low-velocity anomaly around it, which is the direct cause of the strong earthquakes. High vP/vS is distributed in the same location, which may indicate the decline of shear strength of the source region owing to relative softness of the medium, this can be accounted as an explanation for the seismicity feature of the Jiashi strong earthquake swarm.展开更多
Master event location method was described in detail in this paper. Some problems in the application of master event method have been analyzed and some improvements of the method have been made. As compared the locat...Master event location method was described in detail in this paper. Some problems in the application of master event method have been analyzed and some improvements of the method have been made. As compared the location results of MS>=3.0 earthquakes of Jiashi swarm obtained by using this method with that by the traditional absolute method, the result obtained by using the master event method shows more reasonable and more consistent with that from the focal mechanism solutions. After relocation, we can see, the epicenters of M>=5.0 earthquakes show an echelon-type alignment along NNW-SSE direction, and all earthquakes concentrate nearly in a volume region about 30 km (N-S) × 15 km (E-W) × 15 km (U-D). Earthquake focal depths are mainly in the range of 15-28 km.展开更多
基金State Key Basic Development and Programming Project (G1998040702)the Project (9691307) from Ministry of Science and Technology and China Seismological Bureau.
文摘2-D crustal structure and velocity ratio are obtained by processing S-wave data from two wide-angle reflec-tion/refraction profiles in and around Jiashi in northeastern Pamir, with the result of P-wave data taken into con-sideration. The result shows that: 1) Average crustal velocity ratio is obviously higher in Tarim block than in West Kunlun Mts. and Tianshan fold zone, which reflects its crustal physical property of 'hardness' and stability. The relatively low but normai velocity ratio (Poisson's ratio) of the lower crust indicates that the 'downward thrusting' of Tarim basin is the main feature of crustal movement in this area. 2) The rock layer in the upper crust of Tianshan fold zone is relatively 'soft', which makes it prone to rupture and stress energy release. This is the primary tectonic factor for the concentration of small earthquakes in this area. 3) Jiashi is located right over the apex or the inflection point of the updoming lower crustal interface C and the crust-mantle boundary, which is the deep struc-tural background for the occurrence of strong earthquakes. The alternate variation of vp/vs near the block bounda-ries and the complicated configuration of the interfaces in the upper and middie part of the upper crust form a par-ticular structural environment for the Jiashi strong earthquake swarm. vp/vs is comparatively high and shear modulus is low at the focal region, which may be the main reason for the low stress drop of the Jiashi strong earthquake swarm.
基金State Natural Science Foundation of China (49834005), the Project (9691307) from Ministry of Science and Technology and the Chin
文摘A three-dimensional temporary seismic transmission array was arranged in a 50x60 km2 region around Jiashi strong earthquake swarm to receive seismic waves generated by 8 fires from different azimuths. With the inversion method without model blocks and using P and S reflections from Moho at critical distances, the 3-D images of P, S velocity perturbation and ratio vP/vS perturbation of the upper crust under the seismic array were reconstructed. Meanwhile, the seismicity of the Jiashi earthquake swarm was taken into consideration in the analysis of the seismogenesis. The results indicate that the upper crustal structure under the Jiashi strong earthquake swarm region is characterized by significant inhomogeneity both laterally and vertically. From 12 km depth, it is clear that there is an NNW-oriented high P-wave velocity anomalous body corresponding to the epicenter of the swarm with low-velocity anomaly around it, which is the direct cause of the strong earthquakes. High vP/vS is distributed in the same location, which may indicate the decline of shear strength of the source region owing to relative softness of the medium, this can be accounted as an explanation for the seismicity feature of the Jiashi strong earthquake swarm.
文摘Master event location method was described in detail in this paper. Some problems in the application of master event method have been analyzed and some improvements of the method have been made. As compared the location results of MS>=3.0 earthquakes of Jiashi swarm obtained by using this method with that by the traditional absolute method, the result obtained by using the master event method shows more reasonable and more consistent with that from the focal mechanism solutions. After relocation, we can see, the epicenters of M>=5.0 earthquakes show an echelon-type alignment along NNW-SSE direction, and all earthquakes concentrate nearly in a volume region about 30 km (N-S) × 15 km (E-W) × 15 km (U-D). Earthquake focal depths are mainly in the range of 15-28 km.