We compared the stable carbon isotopic records from a loess transect of the Jiaochang in the eastern Tibetan Plateau, spanning the last -21,000 years, with multiproxy data for pedogenesis, including magnetic susceptib...We compared the stable carbon isotopic records from a loess transect of the Jiaochang in the eastern Tibetan Plateau, spanning the last -21,000 years, with multiproxy data for pedogenesis, including magnetic susceptibility, clay fraction, Fed/Fet ratio, carbonate and total organic carbon content, in order to probe the mechanisms of δ^13C values of organic matter and Late Quaternary climate variations in the eastern Tibetan Plateau. Our results indicate that there is no simple relationship between δ^13C of organic matter and summer monsoon variations. The change in δ^13C values of organic matter (in accordance with the ratios of C3 to C4 plants) results from the interaction among temperature, aridity and atmospheric pCO2 level. Drier climate and lower atmospheric pCO2 level contribute to positive carbon isotopic excursion, while negative carbon isotopic excursion is the result of lower temperature and increased atmospheric pCO2 level. Additionally, our results imply that the Tibetan monsoon may play an important role in climate system in the eastern Tibet Plateau, which specifically reflects frequently changing climate in that area. The results provide new insights into the forcing mechanisms on both the δ^13C values of organic matter and the local climate system.展开更多
The Jiaochang arcuate structure is one of the numerous arcuate structural belts in Sichuan. The present paper gives a further argument about the characteristics of that arcuate structure and the new activity of the So...The Jiaochang arcuate structure is one of the numerous arcuate structural belts in Sichuan. The present paper gives a further argument about the characteristics of that arcuate structure and the new activity of the Songpinggou fault and affirms that the Songpinggou fault is an active fault in the Holocene epoch. The Diexi M 7.5 earthquake took place in 1933 on the west wing of that arcuate structure, near the apex of the arc. Many authors have given quite different opinions about the genetic structure of that earthquake. The authors have made on the spot investigations time and again over recent years. Besides this, the authors have also further studied the shape of intensity contour lines, the distribution characteristics of ground surface seismic hazards, the left lateral dislocation of buildings along the Songpinggou fault, the NW trending ground fissures that developed on the ground surface after earthquake, and so on. On this basis, it is still considered that the seismogenic fault of the 1933 Diexi M 7.5 earthquake was the Songpinggou fault on the west wing of the Jiaochang arcuate structure.展开更多
文摘We compared the stable carbon isotopic records from a loess transect of the Jiaochang in the eastern Tibetan Plateau, spanning the last -21,000 years, with multiproxy data for pedogenesis, including magnetic susceptibility, clay fraction, Fed/Fet ratio, carbonate and total organic carbon content, in order to probe the mechanisms of δ^13C values of organic matter and Late Quaternary climate variations in the eastern Tibetan Plateau. Our results indicate that there is no simple relationship between δ^13C of organic matter and summer monsoon variations. The change in δ^13C values of organic matter (in accordance with the ratios of C3 to C4 plants) results from the interaction among temperature, aridity and atmospheric pCO2 level. Drier climate and lower atmospheric pCO2 level contribute to positive carbon isotopic excursion, while negative carbon isotopic excursion is the result of lower temperature and increased atmospheric pCO2 level. Additionally, our results imply that the Tibetan monsoon may play an important role in climate system in the eastern Tibet Plateau, which specifically reflects frequently changing climate in that area. The results provide new insights into the forcing mechanisms on both the δ^13C values of organic matter and the local climate system.
文摘The Jiaochang arcuate structure is one of the numerous arcuate structural belts in Sichuan. The present paper gives a further argument about the characteristics of that arcuate structure and the new activity of the Songpinggou fault and affirms that the Songpinggou fault is an active fault in the Holocene epoch. The Diexi M 7.5 earthquake took place in 1933 on the west wing of that arcuate structure, near the apex of the arc. Many authors have given quite different opinions about the genetic structure of that earthquake. The authors have made on the spot investigations time and again over recent years. Besides this, the authors have also further studied the shape of intensity contour lines, the distribution characteristics of ground surface seismic hazards, the left lateral dislocation of buildings along the Songpinggou fault, the NW trending ground fissures that developed on the ground surface after earthquake, and so on. On this basis, it is still considered that the seismogenic fault of the 1933 Diexi M 7.5 earthquake was the Songpinggou fault on the west wing of the Jiaochang arcuate structure.