Localizing a jammer in an indoor environment in wireless sensor networks becomes a significant research problem due to the ease of blocking the communication between legitimate nodes. An adversary may emit radio frequ...Localizing a jammer in an indoor environment in wireless sensor networks becomes a significant research problem due to the ease of blocking the communication between legitimate nodes. An adversary may emit radio frequency to prevent the transmission between nodes. In this paper, we propose detecting the position of the jammer indoor by using the received signal strength and Kalman filter (KF) to reduce the noise due to the multipath signal caused by obstacles in the indoor environment. We compare our work to the Linear Prediction Algorithm (LP) and Centroid Localization Algorithm (CL). We observed that the Kalman filter has better results when estimating the distance compared to other algorithms.展开更多
文摘Localizing a jammer in an indoor environment in wireless sensor networks becomes a significant research problem due to the ease of blocking the communication between legitimate nodes. An adversary may emit radio frequency to prevent the transmission between nodes. In this paper, we propose detecting the position of the jammer indoor by using the received signal strength and Kalman filter (KF) to reduce the noise due to the multipath signal caused by obstacles in the indoor environment. We compare our work to the Linear Prediction Algorithm (LP) and Centroid Localization Algorithm (CL). We observed that the Kalman filter has better results when estimating the distance compared to other algorithms.