The NE-to NNE-striking Tan-Lu Fault Zone(TLFZ) is the largest fault zone in East China, and a typical representative for the circum-Pacific tectonics. Its late Mesozoic evolution resulted from subduction of the Paleo-...The NE-to NNE-striking Tan-Lu Fault Zone(TLFZ) is the largest fault zone in East China, and a typical representative for the circum-Pacific tectonics. Its late Mesozoic evolution resulted from subduction of the Paleo-Pacific Plate,and can be used for indication to the subduction history. The TLFZ reactivated at the end of Middle Jurassic since its origination in Middle Triassic. This phase of sinistral motion can only be recognized along the eastern edge of the Dabie-Sulu orogenis,and indicates initiation of the Paleo-Pacific(Izanagi) Plate subduction beneath the East China continent. After the Late Jurassic standstill, the fault zone experienced intense sinistral faulting again at the beginning of Early Cretaceous under N-S compression that resulted from the NNW-ward, low-angle, high-speed subduction of the Izanagi Plate. It turned into normal faulting in the rest of Early Cretaceous, which was simultaneous with the peak destruction of the North China Craton caused by backarc extension that resulted from rollback of the subducting Izanagi Plate. The TLFZ was subjected to sinistral, transpressive displacement again at the end of Early Cretaceous. This shortening event led to termination of the North China Craton destruction. The fault zone suffered local normal faulting in Late Cretaceous due to the far-field, weak backarc extension. The late Mesozoic evolution of the TLFZ show repeated alternation between the transpressive strike-slip motion and normal faulting. Each of the sinistral faulting event took place in a relatively short period whereas every normal faulting event lasted in a longer period, which are related to the subduction way and history of the Paleo-Pacific Plates.展开更多
The northwestward subduction of the Izanagi Plate beneath the eastern Eurasian Plate during the Late Mesozoic caused a series of compressional deformation events in the Yanshan fold and thrust belt(YFTB), but the tect...The northwestward subduction of the Izanagi Plate beneath the eastern Eurasian Plate during the Late Mesozoic caused a series of compressional deformation events in the Yanshan fold and thrust belt(YFTB), but the tectonic deformation timing, tectonic properties and relationship between tectonic uplift and sediment accumulation in the intermontane basins continue to be debated. For this reason, the sedimentology, sediment provenance, and basin structure of the Qianjiadian Basin(QJB) in the northern Beijing region during the Late Jurassic and Early Cretaceous were studied in detail. The results suggest that a fault-propagation fold-type(FPFT) growth structure and growth strata developed on the western edge of the QJB and that the top part of Member 2 and Member 3 of the Tuchengzi Formation are growth strata controlled by the limb rotation mechanism. In two small thrust faults in the QJB, the Mesoproterozoic Xiamaling Formation is thrust over the Tuchengzi Formation, and these faults may have controlled the development of the fault-bend fold-type growth strata. An analysis of the "source-to-sink" process suggests that the hanging wall succession of the Shangyi-Pingquan fault(SPF) was the main source area of the Late Jurassic to early Early Cretaceous strata in the QJB. A zircon206 Pb/238 U age of 140.8±2.4 Ma for the volcanic rocks at the bottom of the FPFT growth strata represents the timing of the initiation of FPFT growth structure development. The discovery of the FPFT growth structure and growth strata in the QJB indicate that the QJB was an intermontane flexural basin controlled by fold and thrust structures during the early Early Cretaceous. Near the E-W-trending SPF, the NE-SW-trending Qianjiadian thrust fault(QJTF) and two small intrabasinal thrust faults may constitute a unified right-lateral strike-slip system that formed in response to the northwestward flat subduction of the Izanagi Plate beneath the East Asian continent during the Jurassic-Early Cretaceous.展开更多
The South China,Indochina,and Borneo margins surrounding the South China Sea contain long-lived arcs that became inactive at approximately 85 Ma,even though an embayment of oceanic crust(the‘Proto-South China Sea’)r...The South China,Indochina,and Borneo margins surrounding the South China Sea contain long-lived arcs that became inactive at approximately 85 Ma,even though an embayment of oceanic crust(the‘Proto-South China Sea’)remained in the intervening region.This oceanic crust eventually subducted in the Cenozoic below Borneo and the Cagayan arc,while the modern South China Sea opened in its wake.To investigate the enigmatic cessation of Mesozoic subduction below South China and Borneo,we studied a fragment of oceanic crust and overlying trench-fill sediments that accreted to NW Borneo during the final stages of Paleo-Pacific subduction.Based on radiolarian biostratigraphy of cherts overlying the pillow basalts and detrital zircon geochronology of the trench-fill,we constrained the minimum age of the oceanic crust during accretion to 40 Ma.This shows that subduction cessation was not related to ridge subduction.Geochemical analysis of pillow basalts revealed an enriched mid-ocean ridge basalt signature comparable to oceanic plateaus.Using paleomagnetism,we show that this fragment of oceanic crust was not part of the Izanagi Plate but was part of a plate(the‘Pontus’Plate)separated from the Izanagi Plate by a subduction zone.Based on the minimum 40 Ma age of the oceanic crust and its geochemistry,we suggest that Mesozoic subduction below South China and Borneo stopped when an oceanic plateau entered the trench,while the eastern plate margin with the Izanagi Plate remained active.We show how our findings offer opportunities to restore plate configurations of the Panthalassa-Tethys junction region.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.41472186&91414301)the National Key Basic Research Program of China(Grant No.2016YFC0600102)
文摘The NE-to NNE-striking Tan-Lu Fault Zone(TLFZ) is the largest fault zone in East China, and a typical representative for the circum-Pacific tectonics. Its late Mesozoic evolution resulted from subduction of the Paleo-Pacific Plate,and can be used for indication to the subduction history. The TLFZ reactivated at the end of Middle Jurassic since its origination in Middle Triassic. This phase of sinistral motion can only be recognized along the eastern edge of the Dabie-Sulu orogenis,and indicates initiation of the Paleo-Pacific(Izanagi) Plate subduction beneath the East China continent. After the Late Jurassic standstill, the fault zone experienced intense sinistral faulting again at the beginning of Early Cretaceous under N-S compression that resulted from the NNW-ward, low-angle, high-speed subduction of the Izanagi Plate. It turned into normal faulting in the rest of Early Cretaceous, which was simultaneous with the peak destruction of the North China Craton caused by backarc extension that resulted from rollback of the subducting Izanagi Plate. The TLFZ was subjected to sinistral, transpressive displacement again at the end of Early Cretaceous. This shortening event led to termination of the North China Craton destruction. The fault zone suffered local normal faulting in Late Cretaceous due to the far-field, weak backarc extension. The late Mesozoic evolution of the TLFZ show repeated alternation between the transpressive strike-slip motion and normal faulting. Each of the sinistral faulting event took place in a relatively short period whereas every normal faulting event lasted in a longer period, which are related to the subduction way and history of the Paleo-Pacific Plates.
基金supported by the National Key Research and Development Project (Grant No. 2017YFC0601405)the National Natural Science Foundation of China (Grant Nos. 41572189 & 41820104004)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB18030604)
文摘The northwestward subduction of the Izanagi Plate beneath the eastern Eurasian Plate during the Late Mesozoic caused a series of compressional deformation events in the Yanshan fold and thrust belt(YFTB), but the tectonic deformation timing, tectonic properties and relationship between tectonic uplift and sediment accumulation in the intermontane basins continue to be debated. For this reason, the sedimentology, sediment provenance, and basin structure of the Qianjiadian Basin(QJB) in the northern Beijing region during the Late Jurassic and Early Cretaceous were studied in detail. The results suggest that a fault-propagation fold-type(FPFT) growth structure and growth strata developed on the western edge of the QJB and that the top part of Member 2 and Member 3 of the Tuchengzi Formation are growth strata controlled by the limb rotation mechanism. In two small thrust faults in the QJB, the Mesoproterozoic Xiamaling Formation is thrust over the Tuchengzi Formation, and these faults may have controlled the development of the fault-bend fold-type growth strata. An analysis of the "source-to-sink" process suggests that the hanging wall succession of the Shangyi-Pingquan fault(SPF) was the main source area of the Late Jurassic to early Early Cretaceous strata in the QJB. A zircon206 Pb/238 U age of 140.8±2.4 Ma for the volcanic rocks at the bottom of the FPFT growth strata represents the timing of the initiation of FPFT growth structure development. The discovery of the FPFT growth structure and growth strata in the QJB indicate that the QJB was an intermontane flexural basin controlled by fold and thrust structures during the early Early Cretaceous. Near the E-W-trending SPF, the NE-SW-trending Qianjiadian thrust fault(QJTF) and two small intrabasinal thrust faults may constitute a unified right-lateral strike-slip system that formed in response to the northwestward flat subduction of the Izanagi Plate beneath the East Asian continent during the Jurassic-Early Cretaceous.
基金SHAvdL and DJJvH were funded by NWO Vici grant 865.17.001 to DJJvH.LC acknowledges funding from the National Natural Science Foundation of China(grant 42106073)Open Fund of the State Key Laboratory of Marine Geology(Tongji University)(grant MGK202107).
文摘The South China,Indochina,and Borneo margins surrounding the South China Sea contain long-lived arcs that became inactive at approximately 85 Ma,even though an embayment of oceanic crust(the‘Proto-South China Sea’)remained in the intervening region.This oceanic crust eventually subducted in the Cenozoic below Borneo and the Cagayan arc,while the modern South China Sea opened in its wake.To investigate the enigmatic cessation of Mesozoic subduction below South China and Borneo,we studied a fragment of oceanic crust and overlying trench-fill sediments that accreted to NW Borneo during the final stages of Paleo-Pacific subduction.Based on radiolarian biostratigraphy of cherts overlying the pillow basalts and detrital zircon geochronology of the trench-fill,we constrained the minimum age of the oceanic crust during accretion to 40 Ma.This shows that subduction cessation was not related to ridge subduction.Geochemical analysis of pillow basalts revealed an enriched mid-ocean ridge basalt signature comparable to oceanic plateaus.Using paleomagnetism,we show that this fragment of oceanic crust was not part of the Izanagi Plate but was part of a plate(the‘Pontus’Plate)separated from the Izanagi Plate by a subduction zone.Based on the minimum 40 Ma age of the oceanic crust and its geochemistry,we suggest that Mesozoic subduction below South China and Borneo stopped when an oceanic plateau entered the trench,while the eastern plate margin with the Izanagi Plate remained active.We show how our findings offer opportunities to restore plate configurations of the Panthalassa-Tethys junction region.