期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
柑橘叶片叶绿素含量拉曼光谱定量分析方法研究 被引量:9
1
作者 刘燕德 程梦杰 +2 位作者 郝勇 张宇 侯兆国 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2019年第6期1768-1772,共5页
柑橘叶片叶绿素含量的准确检测对柑橘营养状况和生长态势具有极其重要的意义。研究了快速无损诊断柑橘叶片中叶绿素含量的方法,以期为拉曼光谱检测技术用于柑橘叶片叶绿素含量检测提供参考。采集不同冠层高度和不同地理分布的柑橘叶片12... 柑橘叶片叶绿素含量的准确检测对柑橘营养状况和生长态势具有极其重要的意义。研究了快速无损诊断柑橘叶片中叶绿素含量的方法,以期为拉曼光谱检测技术用于柑橘叶片叶绿素含量检测提供参考。采集不同冠层高度和不同地理分布的柑橘叶片120片,拭去叶片表面的灰尘,用去离子水对其清洗、晾干装入密封袋中并用标签分类标注。然后对柑橘叶片进行拉曼光谱采集,参数设置如下:分辨率为3 cm^-1,积分时间为15 s;激光功率为50 mW。分别采用BaselineWavelet、迭代限制最小二乘(IRLS)和不对称最小二乘(ALS)三种算法对柑橘叶片的拉曼光谱背景进行扣除,使用偏最小二乘(PLS)方法建立定量模型;四种光谱预处理方法归一化(Normalization),Savitzky-Golay卷积平滑(SG smoothing,SG平滑)、多元散射校正(MSC)和Savitzky-Golay一阶导数(SG 1st Der)对扣除背景后的光谱进行进一步的优化处理。结果表明:采用原始光谱、BaselineWavelet、IRLS、ALS背景扣除处理后的光谱建立PLS模型,模型的相关系数r分别为0.858,0.828,0.885和0.862,交互验证均方根误差(RMSECV)分别为5.392,5.870,4.934和5.336,最佳因子数分别为8,3,8和8;IRLS背景扣除处理后的PLS模型的RMSECV最小,相关系数最高,建模效果最好。分别采用SG平滑、归一化、MSC和SG 1st Der预处理方法对IRLS背景扣除后光谱进行预处理并建立PLS模型,结果表明:IRLS光谱及其结合SG平滑、归一化、MSC和SG 1st Der四种预处理方法的PLS模型的R分别为0.885,0.897,0.852,0.863和0.888,RMSECV分别为4.934,4.715,5.595,5.182和4.962;最佳因子数分别为8,8,8,8和5;IRLS-SG平滑后PLS模型的RMSECV最小,模型效果最优。对IRLS-SG平滑预处理后的PLS模型展开验证,预测相关系数r为0.844,预测均方根误差(RMSEP)为5.29,预测精确度较高。采用拉曼光谱结合三种光谱背景扣除方法和四种预处理方法对柑橘叶片叶绿素含量进行定量分� 展开更多
关键词 BaselineWavelet 迭代限制最小二乘 不对称最小二乘 SG平滑 拉曼光谱 叶绿素 柑橘叶片
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部