In this paper we discuss a relatively general kind of iterative functional equation G(x,f(x), ...,f n (x)) = 0 (for allx ∈J), whereJ is a connected closed subset of the real number axis ?,G∈C m (J n+1, ?) andn ≥ 2....In this paper we discuss a relatively general kind of iterative functional equation G(x,f(x), ...,f n (x)) = 0 (for allx ∈J), whereJ is a connected closed subset of the real number axis ?,G∈C m (J n+1, ?) andn ≥ 2. Using the method of approximating fixed points by small shift of maps, choosing suitable metrics on functional spaces and finding a relation between uniqueness and stability of fixed points of maps of general spaces, we prove the existence, uniqueness and stability ofCm solutions of the above equation for any integer m ≥ 0 under relatively weak conditions, and generalize related results in reference in different aspects.展开更多
A numerical method is proposed to simulate the transverse vibrations of a viscoelastic moving string constituted by an integral law. In the numerical computation, the Galerkin method based on the Hermite functions is ...A numerical method is proposed to simulate the transverse vibrations of a viscoelastic moving string constituted by an integral law. In the numerical computation, the Galerkin method based on the Hermite functions is applied to discretize the state variables, and the Runge- Kutta method is applied to solve the resulting differential-integral equation system. A linear iterative process is designed to compute the integral terms at each time step, which makes the numerical method more efficient and accurate. As examples, nonlinear parametric vibrations of an axially moving viscoelastic string are analyzed.展开更多
文摘In this paper we discuss a relatively general kind of iterative functional equation G(x,f(x), ...,f n (x)) = 0 (for allx ∈J), whereJ is a connected closed subset of the real number axis ?,G∈C m (J n+1, ?) andn ≥ 2. Using the method of approximating fixed points by small shift of maps, choosing suitable metrics on functional spaces and finding a relation between uniqueness and stability of fixed points of maps of general spaces, we prove the existence, uniqueness and stability ofCm solutions of the above equation for any integer m ≥ 0 under relatively weak conditions, and generalize related results in reference in different aspects.
基金supported by the National Outstanding Young Scientists Fund of China (No. 10725209)the National ScienceFoundation of China (No. 10672092)+1 种基金Shanghai Municipal Education Commission Scientific Research Project (No. 07ZZ07)Shanghai Leading Academic Discipline Project (No. Y0103).
文摘A numerical method is proposed to simulate the transverse vibrations of a viscoelastic moving string constituted by an integral law. In the numerical computation, the Galerkin method based on the Hermite functions is applied to discretize the state variables, and the Runge- Kutta method is applied to solve the resulting differential-integral equation system. A linear iterative process is designed to compute the integral terms at each time step, which makes the numerical method more efficient and accurate. As examples, nonlinear parametric vibrations of an axially moving viscoelastic string are analyzed.