This study predicts the characteristics of a compressible polytropic air spring model. A second-order nonlinear autonomous air spring model is presented. The proposed model is based on the assumption that polytropic p...This study predicts the characteristics of a compressible polytropic air spring model. A second-order nonlinear autonomous air spring model is presented. The proposed model is based on the assumption that polytropic processes occur. Isothermal and isentropic compression and expansion of the air within the spring chambers are the two scenarios that are taken into consideration. In these situations, the air inside the spring chambers compresses and expands, resulting in nonlinear spring restoring forces. The MATLAB/Simulink software environment is used to build a numerical simulation model for the dynamic behavior of the air spring. To quantify the values of the stiffnesses of the proposed models, a numerical solution is run over time for various values of the design parameters. The isentropic process case has a higher dynamic air spring stiffness than the isothermal process case, according to the results. The size of the air spring chamber and the area of the air spring piston influence the air spring stiffness in both situations. It is demonstrated that the stiffness of the air spring increases linearly with increasing piston area and decreases nonlinearly with increasing air chamber length. As long as the ratio of the vibration’s amplitude to the air spring’s chamber length is small, there is good agreement in both scenarios between the linearized model and the full nonlinear model. This implies that linear modeling is a reasonable approximation of the complete nonlinear model in this particular scenario.展开更多
Compressed air pumped hydro energy storage equipment combines compressed air energy storage technology and pumped storage technology. The water is pumped to a vessel to compress air for energy storage, and the compres...Compressed air pumped hydro energy storage equipment combines compressed air energy storage technology and pumped storage technology. The water is pumped to a vessel to compress air for energy storage, and the compressed air expanses pushing water to drive the hydro turbine for power generation. The novel storage equipment saves natural gas resources, reduces carbon emission, and improves the controllability and reliability. The principle of compressed air pumped hydro energy storage is introduced and its mathematical model is built. The storage and generation process of the novel equipment is analyzed using the model. The calculation formula of the storage power is deduced in theory in different situations of isothermal and adiabatic compression. The optimal storage scheme is given when the capacity and withstand pressure of the vessel is definitive, and the max available capacity and the equipment utilization efficiency evaluation of the scheme is given.展开更多
The investigation of the melting behaviors of the molten salt at micron scale during the melting process is critical for explaining the solid-liquid phase transition mechanism.In this paper,a novel experimental system...The investigation of the melting behaviors of the molten salt at micron scale during the melting process is critical for explaining the solid-liquid phase transition mechanism.In this paper,a novel experimental system and analysis method were proposed to study the melting process with three heating rates in the range of1-10℃/min of the solar salt at micron scale.The solid-liquid boundary morphology and phase transition kinetics of molten salt particles were focused on.Meanwhile,the correlations between liquid fraction,temperature and time under different heating rates were studied.The solid-liquid boundary morphology was depicted by the visualized experimental set-up,and the instantaneous liquid volume fraction during the non-isothermal phase transition was obtained.Then,the correlation between temperature and liquid volume fraction was proposed to reveal the evolution of the solid-liquid boundary with temperature at different heating rates.Furthermore,the non-isothermal phase transition kinetic equation was established by introducing a constant parameter(V_(a,b)),and more kinetic parameters such as 1g V_(a,b) and-lg V_(a,b)/b were studied.The results showed that the exponent b is not sensitive to the heating rate with a range of 3-5 for solar salt particles.However,the heating rate influences the value of V_(a,b) and presents a positive relationship.Besides,the non-isothermal phase transition kinetic equations at different heating rates in the range of 1-10℃/min can be quickly predicted by the proposed improved experimental test method.This study could fill the research insufficiency and provide significant guidance for future research on the solid-liquid transition mechanism of molten salts at micron scale.展开更多
Non-isothermal convective drying schemes were examined for Lavandula×allardii leaves and inflorescences.Drying process parameters were optimized using response surface methodology(RSM)to ensure the peak operation...Non-isothermal convective drying schemes were examined for Lavandula×allardii leaves and inflorescences.Drying process parameters were optimized using response surface methodology(RSM)to ensure the peak operational performance.The effects of temperature increase rate(2–4°C/h)and the airflow velocity(1–3 m/s)on the essential oil yield,drying duration and consumption,were investigated.A face-centered central composite design was deployed and the experimental data was adapted to the most suitable polynomial models,as determined by the regression analysis.Analysis of variance was applied to assess the effects of the process variables,their interactions and the statistical significance of the examined models.Both factors of temperature increase rate and airflow velocity had a significant impact on the drying duration.Airflow velocity had a greater effect on leaves’essential oil yield and inflorescences’process energy consumption,whereas the rates of temperature increase had a greater influence on the inflorescences’essential oil yield and leaves’energy consumption.The minimum drying duration and energy consumption were obtained for the maximum temperature increasing rate at 3 and 1 m/s airflow velocities respectively;and the highest essential oil yield was obtained for the least rate of temperature increase and airflow velocity for both leaves and inflorescences.Numerical optimization was performed for minimizing drying duration and energy consumption by maximizing the essential oil yield.The rate of temperature increases of 4°C/h and the airflow velocity of 1 m/s,were proposed as the optimum non-isothermal drying conditions for both leaves and inflorescences of Lavandula×allardii.Predicted values of essential oil content have been 1.387/3.05 mL/g,4.21/4.18 h drying time and 0.809/0.732 kWh energy consumption at the optimum operation point for leaves and inflorescences,respectively.The resulted optimized non-stationary temperature scheme considerably improved the drying kinetics and the process consump展开更多
The microstructure transformation and precipitation behavior of nano-carbides in Ti microalloyed steel during isothermal process were studied by a compression test on a Gleeble 3800 thermomechanical simulator and anal...The microstructure transformation and precipitation behavior of nano-carbides in Ti microalloyed steel during isothermal process were studied by a compression test on a Gleeble 3800 thermomechanical simulator and analyzed by optical microscopy,transmission electron microscopy and other methods.The results show thatγ→αphase transformation and TiC precipitation take place in Ti microalloyed steel during the isothermal process,and time–temperature–transformation curve and precipitation–time–temperature(PTT)curve are all of“C”-type.During the isothermal process,the interphase precipitation of TiC mostly occurs at the period of the phase transformation,and the random precipitation of TiC mostly occurs on the ferrite after the phase transformation.The increment in yield strength at the initial stage of isothermal transformation mainly comes from phase transformation strengthening.With the increase in isothermal time,the precipitation hardening effect becomes more important for nucleation and growth of titanium carbides and eventually reaches the maximum value at the precipitation finished point of the PTT curve.展开更多
文摘This study predicts the characteristics of a compressible polytropic air spring model. A second-order nonlinear autonomous air spring model is presented. The proposed model is based on the assumption that polytropic processes occur. Isothermal and isentropic compression and expansion of the air within the spring chambers are the two scenarios that are taken into consideration. In these situations, the air inside the spring chambers compresses and expands, resulting in nonlinear spring restoring forces. The MATLAB/Simulink software environment is used to build a numerical simulation model for the dynamic behavior of the air spring. To quantify the values of the stiffnesses of the proposed models, a numerical solution is run over time for various values of the design parameters. The isentropic process case has a higher dynamic air spring stiffness than the isothermal process case, according to the results. The size of the air spring chamber and the area of the air spring piston influence the air spring stiffness in both situations. It is demonstrated that the stiffness of the air spring increases linearly with increasing piston area and decreases nonlinearly with increasing air chamber length. As long as the ratio of the vibration’s amplitude to the air spring’s chamber length is small, there is good agreement in both scenarios between the linearized model and the full nonlinear model. This implies that linear modeling is a reasonable approximation of the complete nonlinear model in this particular scenario.
文摘Compressed air pumped hydro energy storage equipment combines compressed air energy storage technology and pumped storage technology. The water is pumped to a vessel to compress air for energy storage, and the compressed air expanses pushing water to drive the hydro turbine for power generation. The novel storage equipment saves natural gas resources, reduces carbon emission, and improves the controllability and reliability. The principle of compressed air pumped hydro energy storage is introduced and its mathematical model is built. The storage and generation process of the novel equipment is analyzed using the model. The calculation formula of the storage power is deduced in theory in different situations of isothermal and adiabatic compression. The optimal storage scheme is given when the capacity and withstand pressure of the vessel is definitive, and the max available capacity and the equipment utilization efficiency evaluation of the scheme is given.
基金supported by the National Natural Science Foundation of China (No.51821004 and No. 51876061)。
文摘The investigation of the melting behaviors of the molten salt at micron scale during the melting process is critical for explaining the solid-liquid phase transition mechanism.In this paper,a novel experimental system and analysis method were proposed to study the melting process with three heating rates in the range of1-10℃/min of the solar salt at micron scale.The solid-liquid boundary morphology and phase transition kinetics of molten salt particles were focused on.Meanwhile,the correlations between liquid fraction,temperature and time under different heating rates were studied.The solid-liquid boundary morphology was depicted by the visualized experimental set-up,and the instantaneous liquid volume fraction during the non-isothermal phase transition was obtained.Then,the correlation between temperature and liquid volume fraction was proposed to reveal the evolution of the solid-liquid boundary with temperature at different heating rates.Furthermore,the non-isothermal phase transition kinetic equation was established by introducing a constant parameter(V_(a,b)),and more kinetic parameters such as 1g V_(a,b) and-lg V_(a,b)/b were studied.The results showed that the exponent b is not sensitive to the heating rate with a range of 3-5 for solar salt particles.However,the heating rate influences the value of V_(a,b) and presents a positive relationship.Besides,the non-isothermal phase transition kinetic equations at different heating rates in the range of 1-10℃/min can be quickly predicted by the proposed improved experimental test method.This study could fill the research insufficiency and provide significant guidance for future research on the solid-liquid transition mechanism of molten salts at micron scale.
文摘Non-isothermal convective drying schemes were examined for Lavandula×allardii leaves and inflorescences.Drying process parameters were optimized using response surface methodology(RSM)to ensure the peak operational performance.The effects of temperature increase rate(2–4°C/h)and the airflow velocity(1–3 m/s)on the essential oil yield,drying duration and consumption,were investigated.A face-centered central composite design was deployed and the experimental data was adapted to the most suitable polynomial models,as determined by the regression analysis.Analysis of variance was applied to assess the effects of the process variables,their interactions and the statistical significance of the examined models.Both factors of temperature increase rate and airflow velocity had a significant impact on the drying duration.Airflow velocity had a greater effect on leaves’essential oil yield and inflorescences’process energy consumption,whereas the rates of temperature increase had a greater influence on the inflorescences’essential oil yield and leaves’energy consumption.The minimum drying duration and energy consumption were obtained for the maximum temperature increasing rate at 3 and 1 m/s airflow velocities respectively;and the highest essential oil yield was obtained for the least rate of temperature increase and airflow velocity for both leaves and inflorescences.Numerical optimization was performed for minimizing drying duration and energy consumption by maximizing the essential oil yield.The rate of temperature increases of 4°C/h and the airflow velocity of 1 m/s,were proposed as the optimum non-isothermal drying conditions for both leaves and inflorescences of Lavandula×allardii.Predicted values of essential oil content have been 1.387/3.05 mL/g,4.21/4.18 h drying time and 0.809/0.732 kWh energy consumption at the optimum operation point for leaves and inflorescences,respectively.The resulted optimized non-stationary temperature scheme considerably improved the drying kinetics and the process consump
文摘The microstructure transformation and precipitation behavior of nano-carbides in Ti microalloyed steel during isothermal process were studied by a compression test on a Gleeble 3800 thermomechanical simulator and analyzed by optical microscopy,transmission electron microscopy and other methods.The results show thatγ→αphase transformation and TiC precipitation take place in Ti microalloyed steel during the isothermal process,and time–temperature–transformation curve and precipitation–time–temperature(PTT)curve are all of“C”-type.During the isothermal process,the interphase precipitation of TiC mostly occurs at the period of the phase transformation,and the random precipitation of TiC mostly occurs on the ferrite after the phase transformation.The increment in yield strength at the initial stage of isothermal transformation mainly comes from phase transformation strengthening.With the increase in isothermal time,the precipitation hardening effect becomes more important for nucleation and growth of titanium carbides and eventually reaches the maximum value at the precipitation finished point of the PTT curve.