The magnetic properties of a mixed spin-3/2 and spin-2 and a mixed spin-3/2 and spin-5/2 Ising ferromag- netic system with different anisotropies are studied by means of mean-field theory (MFT). The dependence of th...The magnetic properties of a mixed spin-3/2 and spin-2 and a mixed spin-3/2 and spin-5/2 Ising ferromag- netic system with different anisotropies are studied by means of mean-field theory (MFT). The dependence of the phase diagram on single-ion anisotropy strengths is studied too. In the mixed spin-3/2 and spin-2 Ising model, besides the second-order phase transition, the first order-disorder phase transition and the tricritical line are found. In the mixed spin-3/2 and spin-5/2 Ising model, there is no first-order transition and trieritical line.展开更多
The critical properties of the bond-diluted mixed spin-1/2 and spin-1 transverse Ising system with singleion anisotropy are investigated by means of the effective field theory with correlations. Particular emphasis is...The critical properties of the bond-diluted mixed spin-1/2 and spin-1 transverse Ising system with singleion anisotropy are investigated by means of the effective field theory with correlations. Particular emphasis is given to the square lattice for which phase diagrams are obtained. If transverse field varies in the certain ranges we find that the tricritical point is obtained for the value of the bond concentration in a restricted region. We also observe that the reentrant phase transition may occur in the present system if single-ion anisotropy parameter is not large and if transverse field is small. On the other hand, for certain values of the system parameters, new induced magnetic ordering can be obtained. We find a number of interesting phenomena that are not predicted by previous literatures. The influence of the transverse field on the behaviours of the reentrant phase transition and induced magnetic ordering is discussed. A detailed description of the phase transition is presented.展开更多
Ising spin system has been shown to provide a new class of error-correction code and can be used to construct public-key cryptosystems by making use of statistical mechanics. The relation between Ising spin systems an...Ising spin system has been shown to provide a new class of error-correction code and can be used to construct public-key cryptosystems by making use of statistical mechanics. The relation between Ising spin systems and private-key cryptosystems are investigated. Two private-key systems are based on two predetermined randomly constructed sparse matrices and rely on exploiting physical properties of the Mackay-Neal (MN) low-density parity-check (LDPC) error-correcting codes are proposed. One is error correcting private-key system, which is powerful to combat ciphertext errors in communications and computer systems. The other is a private-key system with authentication.展开更多
The synthesis of the Toffoli gate, Fredkin gate, three-qubit Inversion-on-equality gate and D(α) gate, as well as their implementation in a three spins system coupled with Ising interaction are investigated. The sequ...The synthesis of the Toffoli gate, Fredkin gate, three-qubit Inversion-on-equality gate and D(α) gate, as well as their implementation in a three spins system coupled with Ising interaction are investigated. The sequences of the control pulse and the drift process to implement these gates are given. It is revealed that the implementation of some three-qubit gates in a circular spin chain is much better than in a linear spin chain, and every two measurements of the quantum computation complexity are not always consistent. It is significant to directly study the implementation of the multi-qubit gates and even more complicated components of quantum information processing without resorting to their synthesis.展开更多
We report the nonequilibrium dynamical phase transition (NDPT) appearing in a kinetic Ising spin system (ISS) subject to the joint application of a deterministic ex-ternal field and the stochastic mutually correlated ...We report the nonequilibrium dynamical phase transition (NDPT) appearing in a kinetic Ising spin system (ISS) subject to the joint application of a deterministic ex-ternal field and the stochastic mutually correlated noises simultaneously. A time-dependent Ginzburg-Landau sto-chastic differential equation, including an oscillating modu-lation and the correlated multiplicative and additive white noises, was addressed and the numerical solution to the rele-vant Fokker-Planck equation was presented on the basis of an average-period approach of driven field. The correlated white noises and the deterministic modulation induce a kind of dynamic symmetry-breaking order, analogous to the sto-chastic resonance in trend, in the kinetic ISS, and the reen-trant transition has been observed between the dynamic disorder and order phases when the intensities of multiplicative and additive noises were changing. The dependencies of a dynamic order parameter Q upon the intensities of additive noise A and multiplicative noise M, the correlation λ between two noises, and the amplitude of applied external field h were investigated quantitatively and visualized vividly. Here a brief discussion is given to outline the underlying mechanism of the NDPT in a kinetic ISS driven by an external force and correlated noises.展开更多
In this paper,we investigate the controllability of spin 1 systems and the realization of ternary gates.Using dipole and quadrupole operators as the orthogonal basis of su(3) algebra,we discuss the controllability of ...In this paper,we investigate the controllability of spin 1 systems and the realization of ternary gates.Using dipole and quadrupole operators as the orthogonal basis of su(3) algebra,we discuss the controllability of one spin 1 systems and offer the concept of a complete set of control operators first.Then we present the controllability of two spin 1 systems coupled with Ising interaction and the transforming relations of the drift process of the system.Finally the specific realization of the ternary SWAP gate in these systems is discussed.It takes 9 drift processes and 25 basic control processes.展开更多
An Ising-type atom-atom interaction is obtained in a fibre-connected three-atom system. The interaction is effective when △ ≈γ0 〉〉 g. The preparations of remote two-atom and three-atom entanglements governed by t...An Ising-type atom-atom interaction is obtained in a fibre-connected three-atom system. The interaction is effective when △ ≈γ0 〉〉 g. The preparations of remote two-atom and three-atom entanglements governed by this interaction are discussed in a specific parameter region. The overall two-atom entanglement is very small because of the existence of the third atom. However, the three-atom entanglement can reach a maximum very close to 1.展开更多
The dynamic response and stochastic resonance of a kinetic Ising spin system (ISS) subject to the joint action of an external field of weak sinusoidal modulation and stochastic white-nolse are studied by solving the...The dynamic response and stochastic resonance of a kinetic Ising spin system (ISS) subject to the joint action of an external field of weak sinusoidal modulation and stochastic white-nolse are studied by solving the mean-field equation of motion based on Glauber dynamics. The periodically driven stochastic ISS shows that the characteristic stochastic resonance as well as nonequilibrium dynamic phase transition (NDPT) occurs when the frequency ω and amplitude h0 of driving field, the temperature t of the system and noise intensity D are all specifically in accordance with each other in quantity. There exist in the system two typical dynamic phases, referred to as dynamic disordered paramagnetic and ordered ferromagnetic phases respectively, corresponding to a zero- and a unit-dynamic order parameter. The NDPT boundary surface of the system which separates the dynamic paramagnetic phase from the dynamic ferromagnetic phase in the 3D parameter space of ho-t-D is also investigated. An interesting dynamical ferromagnetic phase with an intermediate order parameter of 0.66 is revealed for the first time in the ISS subject to the perturbation of a joint determinant and stochastic field. The intermediate order dynamical ferromagnetic phase is dynamically metastable in nature and owns a peculiar characteristic in its stability as well as the response to external driving field as compared with a fully order dynamic ferromagnetic phase.展开更多
Magnetic hysteresis and compensation behavior of a mixed spin-(1, 3/2) Ising model on a square lattice are investigated in the framework of effective field theory based on a probability distribution technique. The e...Magnetic hysteresis and compensation behavior of a mixed spin-(1, 3/2) Ising model on a square lattice are investigated in the framework of effective field theory based on a probability distribution technique. The effect of random crystal field, ferromagnetic and ferrimagnetic exchange interaction on hysteresis loops and compensation phenomenon are discussed. A number of characteristic phenomena have been reported such as the observation of triple hysteresis loops at low temperatures and for negative values of random crystal field. Critical and double compensation temperatures have been also found. The obtained results are also compared to some previous works.展开更多
基金Supported by the National Natural Science Foundation of China(11074184)the Foundation for University Key Young Teacher of Henan Province(2009GGJS-163)
文摘The magnetic properties of a mixed spin-3/2 and spin-2 and a mixed spin-3/2 and spin-5/2 Ising ferromag- netic system with different anisotropies are studied by means of mean-field theory (MFT). The dependence of the phase diagram on single-ion anisotropy strengths is studied too. In the mixed spin-3/2 and spin-2 Ising model, besides the second-order phase transition, the first order-disorder phase transition and the tricritical line are found. In the mixed spin-3/2 and spin-5/2 Ising model, there is no first-order transition and trieritical line.
文摘The critical properties of the bond-diluted mixed spin-1/2 and spin-1 transverse Ising system with singleion anisotropy are investigated by means of the effective field theory with correlations. Particular emphasis is given to the square lattice for which phase diagrams are obtained. If transverse field varies in the certain ranges we find that the tricritical point is obtained for the value of the bond concentration in a restricted region. We also observe that the reentrant phase transition may occur in the present system if single-ion anisotropy parameter is not large and if transverse field is small. On the other hand, for certain values of the system parameters, new induced magnetic ordering can be obtained. We find a number of interesting phenomena that are not predicted by previous literatures. The influence of the transverse field on the behaviours of the reentrant phase transition and induced magnetic ordering is discussed. A detailed description of the phase transition is presented.
文摘Ising spin system has been shown to provide a new class of error-correction code and can be used to construct public-key cryptosystems by making use of statistical mechanics. The relation between Ising spin systems and private-key cryptosystems are investigated. Two private-key systems are based on two predetermined randomly constructed sparse matrices and rely on exploiting physical properties of the Mackay-Neal (MN) low-density parity-check (LDPC) error-correcting codes are proposed. One is error correcting private-key system, which is powerful to combat ciphertext errors in communications and computer systems. The other is a private-key system with authentication.
基金supported by the Project of Natural Science Foundation of Jiangsu Education Bureau, China (Grant No. 09KJB140010)the Project Prepared for National Natural Science Foundation of Xuzhou Normal University (Grant No. 08XLY03)
文摘The synthesis of the Toffoli gate, Fredkin gate, three-qubit Inversion-on-equality gate and D(α) gate, as well as their implementation in a three spins system coupled with Ising interaction are investigated. The sequences of the control pulse and the drift process to implement these gates are given. It is revealed that the implementation of some three-qubit gates in a circular spin chain is much better than in a linear spin chain, and every two measurements of the quantum computation complexity are not always consistent. It is significant to directly study the implementation of the multi-qubit gates and even more complicated components of quantum information processing without resorting to their synthesis.
基金supported by the National Natural Science Foundation of China(Grant No.60471023)the Natural Science Foundation of Guangdong Province(Grant No.031544)
文摘We report the nonequilibrium dynamical phase transition (NDPT) appearing in a kinetic Ising spin system (ISS) subject to the joint application of a deterministic ex-ternal field and the stochastic mutually correlated noises simultaneously. A time-dependent Ginzburg-Landau sto-chastic differential equation, including an oscillating modu-lation and the correlated multiplicative and additive white noises, was addressed and the numerical solution to the rele-vant Fokker-Planck equation was presented on the basis of an average-period approach of driven field. The correlated white noises and the deterministic modulation induce a kind of dynamic symmetry-breaking order, analogous to the sto-chastic resonance in trend, in the kinetic ISS, and the reen-trant transition has been observed between the dynamic disorder and order phases when the intensities of multiplicative and additive noises were changing. The dependencies of a dynamic order parameter Q upon the intensities of additive noise A and multiplicative noise M, the correlation λ between two noises, and the amplitude of applied external field h were investigated quantitatively and visualized vividly. Here a brief discussion is given to outline the underlying mechanism of the NDPT in a kinetic ISS driven by an external force and correlated noises.
基金supported by the Project of Natural Science Foundation of Jiangsu Education Bureau,China (Grant No. 09KJB140010)the Project Prepared for National Natural Science Foundation of Xuzhou Normal University (Grant No. 08XLY03)the Innovation Project of Postgraduate Students of Xuzhou Normal University (Key Project, Grant No. 08YLA005)
文摘In this paper,we investigate the controllability of spin 1 systems and the realization of ternary gates.Using dipole and quadrupole operators as the orthogonal basis of su(3) algebra,we discuss the controllability of one spin 1 systems and offer the concept of a complete set of control operators first.Then we present the controllability of two spin 1 systems coupled with Ising interaction and the transforming relations of the drift process of the system.Finally the specific realization of the ternary SWAP gate in these systems is discussed.It takes 9 drift processes and 25 basic control processes.
基金supported by the National Natural Science Foundation of China (Grant Nos 10647107 and 10575017)
文摘An Ising-type atom-atom interaction is obtained in a fibre-connected three-atom system. The interaction is effective when △ ≈γ0 〉〉 g. The preparations of remote two-atom and three-atom entanglements governed by this interaction are discussed in a specific parameter region. The overall two-atom entanglement is very small because of the existence of the third atom. However, the three-atom entanglement can reach a maximum very close to 1.
基金Project supported by the Natural Science Foundation of Guangdong Province, China (Grant No 031554).
文摘The dynamic response and stochastic resonance of a kinetic Ising spin system (ISS) subject to the joint action of an external field of weak sinusoidal modulation and stochastic white-nolse are studied by solving the mean-field equation of motion based on Glauber dynamics. The periodically driven stochastic ISS shows that the characteristic stochastic resonance as well as nonequilibrium dynamic phase transition (NDPT) occurs when the frequency ω and amplitude h0 of driving field, the temperature t of the system and noise intensity D are all specifically in accordance with each other in quantity. There exist in the system two typical dynamic phases, referred to as dynamic disordered paramagnetic and ordered ferromagnetic phases respectively, corresponding to a zero- and a unit-dynamic order parameter. The NDPT boundary surface of the system which separates the dynamic paramagnetic phase from the dynamic ferromagnetic phase in the 3D parameter space of ho-t-D is also investigated. An interesting dynamical ferromagnetic phase with an intermediate order parameter of 0.66 is revealed for the first time in the ISS subject to the perturbation of a joint determinant and stochastic field. The intermediate order dynamical ferromagnetic phase is dynamically metastable in nature and owns a peculiar characteristic in its stability as well as the response to external driving field as compared with a fully order dynamic ferromagnetic phase.
文摘Magnetic hysteresis and compensation behavior of a mixed spin-(1, 3/2) Ising model on a square lattice are investigated in the framework of effective field theory based on a probability distribution technique. The effect of random crystal field, ferromagnetic and ferrimagnetic exchange interaction on hysteresis loops and compensation phenomenon are discussed. A number of characteristic phenomena have been reported such as the observation of triple hysteresis loops at low temperatures and for negative values of random crystal field. Critical and double compensation temperatures have been also found. The obtained results are also compared to some previous works.