Ultra High Molecular Weight Polyethylene(UHMWPE)has been widely used as a bearing material for artificial joint replacement over forty years.It is usually crosslinked by gamma rays irradiation before its implantation ...Ultra High Molecular Weight Polyethylene(UHMWPE)has been widely used as a bearing material for artificial joint replacement over forty years.It is usually crosslinked by gamma rays irradiation before its implantation into human body.In this study,UHMWPE and UHMWPE/nano-hydroxyapatite(n-HA)composite were prepared by vacuum hot-pressing method.The prepared materials were irradiated by gamma rays in vacuum and molten heat treated in vacuum just after irradiation.The effect of filling n-HA with gamma irradiation on tribological properties of UHMWPE was investigated by using friction and wear experimental machine(model MM-200)under deionized water lubrication.Micro-morphology of worn surface was observed by metallographic microscope.Contact angle and hardness of the materials were also measured.The results show that contact angle and hardness are changed by filling n-HA and gamma irradiation.Friction coefficient and wear rate under deionized water lubrication are reduced by filling n-HA.While friction coefficient is increased and wear rate is reduced significantly by gamma irradiation.The worn surface of unfilled material is mainly characterized as adhesive wear and abrasive wear,and that of n-HA filled material is mainly characterized as abrasive wear.After gamma irradiation,the degrees of adhesive and abrasive wear for unfilled material and abrasive wear of n-HA filled material are significantly reduced.Unfilled and filled materials after irradiation are mainly shown as slight fatigue wear.The results indicate that UHMWPE and UHMWPE/n-HA irradiated at the dose of 150 kGy can be used as bearing materials in artificial joints for its excellent wear resistance compared to original UHMWPE.展开更多
AIM: To clarify the usefulness of a new method for performing a pancreaticojejunostomy by using a fast-absorbable suture material irradiated polyglactin 910, and a temporary stent tube for a narrow pancreatic duct wit...AIM: To clarify the usefulness of a new method for performing a pancreaticojejunostomy by using a fast-absorbable suture material irradiated polyglactin 910, and a temporary stent tube for a narrow pancreatic duct with a soft pancreatic texture.METHODS: Among 63 consecutive patients with soft pancreas undergoing a pancreaticoduodenectomy from 2003 to 2006, 35 patients were treated with a new reconstructive method. Briefly, after the pancreatic transaction, a stent tube was inserted into the lumen of the pancreatic duct and ligated with it by a fast-absorbable suture. Another tip of the stent tube was introduced into the intestinal lumen at the jejunal limb, where a purse-string suture was made by another fast-absorbable suture to roughly fix the tube. The pancreaticojejunostomy was completed by ligating two fast-absorbable sutures to approximate the ductal end and the jejunal mucosa, and by adding a rough anastomosis between the pancreatic parenchyma and the seromuscular layer of the jejunum. The initial surgical results with this method were retrospectively compared with those of the 28 patients treated with conventional duct-to-mucosa anastomosis.RESULTS: The incidences of postoperative morbidity including pancreatic fistula were comparable between the two groups (new; 3%-17% vs conventional; 7%-14% according to the definitions). There was no mortality and re-admission. Late complications were also rarely seen.CONCLUSION: A pancreaticojejunostomy using an irradiated polyglactin 910 suture material and a temporary stent is easy to perform and is feasible even in cases with a narrow pancreatic duct and a normal soft pancreas.展开更多
Complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature.This paper evaluates the role of the phase field method in pred...Complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature.This paper evaluates the role of the phase field method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical,thermal,and magnetic properties.The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials.Then,the phase field method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiated nuclear materials are reviewed.The review shows that(1)Phase field models can correctly describe important phenomena such as spatial-dependent generation,migration,and recombination of defects,radiation-induced dissolution,the Soret effect,strong interfacial energy anisotropy,and elastic interaction;(2)The phase field method can qualitatively and quantitatively simulate two-dimensional and three-dimensional microstructure evolution,including radiation-induced segregation,second phase nucleation,void migration,void and gas bubble superlattice formation,interstitial loop evolution,hydrate formation,and grain growth,and(3)The Phase field method correctly predicts the relationships between microstructures and properties.The final section is dedicated to a discussion of the strengths and limitations of the phase field method,as applied to irradiation effects in nuclear materials.展开更多
Exposure to ionizing radiation,a physical treatment that inactivates live tumor cells,has been extensively applied to enhance the antitumor responses induced by cancer cell vaccines in both animal research and human c...Exposure to ionizing radiation,a physical treatment that inactivates live tumor cells,has been extensively applied to enhance the antitumor responses induced by cancer cell vaccines in both animal research and human clinical trials.However,the mechanisms by which irradiated cells function as immunogenic tumor vaccines and induce effective antitumor responses have not been fully explored.Here,we demonstrate that oxidized mitochondrial DNA(mtDNA)and stimulator of interferon genes(STING)signaling play a key roles in the enhanced antitumor effect achieved with an irradiated tumor cell vaccine.Elevations in ROS and oxidized mtDNA 8-OHG content could be induced in irradiated tumor cells.Oxidized mtDNA derived from irradiated tumor cells gained access to the cytosol of dendritic cells(DCs).Oxidized mtDNA,as a DAMP or adjuvant,activated the STING-TBK1-IRF3-IFN-β pathway in DCs,which subsequently cross-presented irradiated tumor cell-derived antigens to CD8^(+)T cells and elicited antitumor immunity.The results of our study provide insight into the mechanism by which an irradiated cell vaccine mediates antitumor immunity,which may have implications for new strategies to improve the efficacy of irradiated vaccines.展开更多
Photocatalytic H_(2)O_(2)production provides a clean and sustainable strategy for artificial photosynthesis.Herein,an inorganic/organic composite photocatalyst was fabricated by in-situ growth of CdS nanoparticles on ...Photocatalytic H_(2)O_(2)production provides a clean and sustainable strategy for artificial photosynthesis.Herein,an inorganic/organic composite photocatalyst was fabricated by in-situ growth of CdS nanoparticles on the surface of resorcinol-formaldehyde(RF)resin spheres.RF spheres played multiple roles:(i)acting as a substrate for the growth of CdS and constructing a core-shell structure with seamless con-tact;(ⅱ)improving visible light absorption of CdS;(ⅲ)forming an S-scheme heterojunction with CdS and promoting the charge separation and transfer.Consequently,under visible light illumination,CdS/RF composite presented remarkably enhanced H_(2)O_(2)production activity.Its H_(2)O_(2)yield in 60 min was 801μmol L^(-1),which was 5.2 and 1.5 times higher than that of RF spheres and CdS hollow spheres,respectively.The charge migration between CdS and RF followed the S-scheme photocatalytic mechanism,which was verified by work function measurement,ex-situ and in-situ irradiated X-ray photoelectron spectroscopy.This work brings a novel insight into designing RF-based inorganic/organic S-scheme heterojunction pho-tocatalysts for efficient H_(2)O_(2)production.展开更多
Exploiting efficient and low-cost cocatalyst with a facile grafting strategy is of critical importance for significantly boosting the photocatalytic H2-evolution activity.In this study,S2^--adsorbed MoSx nanoparticle ...Exploiting efficient and low-cost cocatalyst with a facile grafting strategy is of critical importance for significantly boosting the photocatalytic H2-evolution activity.In this study,S2^--adsorbed MoSx nanoparticle as a superior H2-evolutoin cocatalyst was successfully grafted on the TiO2 surface to greatly boost its photocatalytic activity via one-step lactic acid-induced synthesis strategy.Herein,the lactic acid can induce the homogeneous production of amorphous MoSx(a-MoSx)nanoparticles from MoS42-precursor,while the symbiotic S2^-ions can be easily and availably self-adsorbed on the a-Mo Sxsurface,resulting in the formation of S2^--adsorbed a-Mo Sxnanoparticles with a small size of 0.5-3 nm.Photocatalytic results manifested that the S2^--adsorbed Mo Sxnanoparticles could dramatically facilitate the H2-generation rate of TiO2 photocatalysts(3452μmol h^-1 g^-1,AQE=16.5%).In situ irradiated XPS in conjunction with transient-state PL and photoelectrochemical tests reveal that the improved H_(2)-generation activity can be ascribed to the synergistic effect of boosted interfacial charge transfer from TiO_(2) to S^(2-)adsorbed Mo Sx and the superior H_(2)-evolution reaction on self-adsorbed S_(2-)ions.In addition,the S^(2-)-adsorbed Mo Sx nanoparticles can also act as the general H_(2)-generation cocatalyst to obviously promote the activity of other typical host photocatalysts such as g-C_(3) N_(4) and Cd S.This work provides an innovative approach to develop high-efficiency Mo Sx-based cocatalyst with boosted interfacial charge transfer toward highly efficient photocatalytic materials.展开更多
Collision of laser-driven subrelativistic high-density ion flows provides a way to create extremely compressed ion conglomerates and study their properties.This paper presents a theoretical study of the electrodynamic...Collision of laser-driven subrelativistic high-density ion flows provides a way to create extremely compressed ion conglomerates and study their properties.This paper presents a theoretical study of the electrodynamic implosion of ions inside a hollow spherical or cylindrical shell irradiated by femtosecond petawatt laser pulses.We propose to apply a very effective mechanism for ion acceleration in a self-consistent field with strong charge separation,based on the oscillation of laser-accelerated fast electrons in this field near the thin shell.Fast electrons are generated on the outer side of the shell under irradiation by the intense laser pulses.It is shown that ions,in particular protons,may be accelerated at the implosion stage to energies of tens and hundreds of MeV when a sub-micrometer shell is irradiated by femtosecond laser pulses with an intensity of 10^(21)–10^(23)W cm^(−2).展开更多
A fused silica glass micro-channel can be formed by chemical etching after femtosecond laser irradiation, and the successful etching probability is only 48%. In order to improve the micro-channel fabrication success p...A fused silica glass micro-channel can be formed by chemical etching after femtosecond laser irradiation, and the successful etching probability is only 48%. In order to improve the micro-channel fabrication success probability,the method of processing a high-temperature lattice by a femtosecond laser pulse train is provided. With the same pulse energy and scanning speed, the success probability can be increased to 98% by optimizing pulse delay.The enhancement is mainly caused by the nanostructure, which changes from a periodic slabs structure to some intensive and loose pore structures. In this Letter, the optimum pulse energy distribution ratio to the etching is also investigated.展开更多
In this work,the high-energy-density plasmas(HEDP)evolved from joule-class-femtosecond-laser-irradiated nanowire-array(NWA)targets were numerically and experimentally studied.The results of particle-in-cell simulation...In this work,the high-energy-density plasmas(HEDP)evolved from joule-class-femtosecond-laser-irradiated nanowire-array(NWA)targets were numerically and experimentally studied.The results of particle-in-cell simulations indicate that ions accelerated in the sheath field around the surfaces of the nanowires are eventually confined in a plasma,contributing most to the high energy densities.The protons emitted from the front surfaces of the NWA targets provide rich information about the interactions that occur.We give the electron and ion energy densities for broad target parameter ranges.The ion energy densities from NWA targets were found to be an order of magnitude higher than those from planar targets,and the volume of the HEDP was several-fold greater.At optimal target parameters,8%of the laser energy can be converted to confined protons,and this results in ion energy densities at the GJ/cm^(3) level.In the experiments,the measured energy of the emitted protons reached 4 MeV,and the changes in energy with the NWA’s parameters were found to fit the simulation results well.Experimental measurements of neutrons from 2H(d,n)3He fusion with a yield of(24±18)×10^(6)/J from deuterated polyethylene NWA targets also confirmed these results.展开更多
In this paper, toxicity and safety of high-dose irradiated chicken-breast meat were evaluated. For assays of acute toxicity, genetic toxicity, and sub-chronic toxicity, ames test, mice bone marrow erythrocyte micronuc...In this paper, toxicity and safety of high-dose irradiated chicken-breast meat were evaluated. For assays of acute toxicity, genetic toxicity, and sub-chronic toxicity, ames test, mice bone marrow erythrocyte micronucleus, and mice sperm abnormality were performed. The results showed that, in the acute oral toxicity tests, median lethal dose (more than 10 000 mg kg-~) in male and female ICR mice showed no toxicological signs. For subacute 30-d oral toxicology of irradiated chicken-breast meat with dose of 10, 15 and 25 kGy in both male and female SD rats, no noticeable toxicological effects were observed. It is concluded that chicken-breast meat with high-dose irradiation has no acute toxicity and no genotoxicity, nor harmful effects on the animal body at the tested dosage range. Therefore, high-dose irradiated chicken-breast meat is safe for pet consumption.展开更多
In this work, Automated Ball Indentation (ABI) technique is based on load controlled multiple indentations (at a single penetration location) of a polished surface by a spherical indenter (0.7 to 1.46 mm) and indentat...In this work, Automated Ball Indentation (ABI) technique is based on load controlled multiple indentations (at a single penetration location) of a polished surface by a spherical indenter (0.7 to 1.46 mm) and indentation depth is progressively increased to a maximum user specified limit with intermediate partial unloading. This technique permits measurement of yield strength, stress-strain curve, strength coefficient and strain hardening exponent. ABI Testing was carried out on samples of Zr-Nb2.5 (Pressure Tube Material) with different heat treatment conditions in which temperature was varying (550 degree to 900 degree and retention time was varying 0.5 to 6 hour and furnace cooled. For all these test material and conditions, the ABI derived results were in very good agreement with those from conventional standard test methods.展开更多
基金supported by the National Natural Science Foundation of China (Grant No. 50575106)High Technology Project of Jiangsu Province, P. R. China (Grant No. BG2007046)
文摘Ultra High Molecular Weight Polyethylene(UHMWPE)has been widely used as a bearing material for artificial joint replacement over forty years.It is usually crosslinked by gamma rays irradiation before its implantation into human body.In this study,UHMWPE and UHMWPE/nano-hydroxyapatite(n-HA)composite were prepared by vacuum hot-pressing method.The prepared materials were irradiated by gamma rays in vacuum and molten heat treated in vacuum just after irradiation.The effect of filling n-HA with gamma irradiation on tribological properties of UHMWPE was investigated by using friction and wear experimental machine(model MM-200)under deionized water lubrication.Micro-morphology of worn surface was observed by metallographic microscope.Contact angle and hardness of the materials were also measured.The results show that contact angle and hardness are changed by filling n-HA and gamma irradiation.Friction coefficient and wear rate under deionized water lubrication are reduced by filling n-HA.While friction coefficient is increased and wear rate is reduced significantly by gamma irradiation.The worn surface of unfilled material is mainly characterized as adhesive wear and abrasive wear,and that of n-HA filled material is mainly characterized as abrasive wear.After gamma irradiation,the degrees of adhesive and abrasive wear for unfilled material and abrasive wear of n-HA filled material are significantly reduced.Unfilled and filled materials after irradiation are mainly shown as slight fatigue wear.The results indicate that UHMWPE and UHMWPE/n-HA irradiated at the dose of 150 kGy can be used as bearing materials in artificial joints for its excellent wear resistance compared to original UHMWPE.
文摘AIM: To clarify the usefulness of a new method for performing a pancreaticojejunostomy by using a fast-absorbable suture material irradiated polyglactin 910, and a temporary stent tube for a narrow pancreatic duct with a soft pancreatic texture.METHODS: Among 63 consecutive patients with soft pancreas undergoing a pancreaticoduodenectomy from 2003 to 2006, 35 patients were treated with a new reconstructive method. Briefly, after the pancreatic transaction, a stent tube was inserted into the lumen of the pancreatic duct and ligated with it by a fast-absorbable suture. Another tip of the stent tube was introduced into the intestinal lumen at the jejunal limb, where a purse-string suture was made by another fast-absorbable suture to roughly fix the tube. The pancreaticojejunostomy was completed by ligating two fast-absorbable sutures to approximate the ductal end and the jejunal mucosa, and by adding a rough anastomosis between the pancreatic parenchyma and the seromuscular layer of the jejunum. The initial surgical results with this method were retrospectively compared with those of the 28 patients treated with conventional duct-to-mucosa anastomosis.RESULTS: The incidences of postoperative morbidity including pancreatic fistula were comparable between the two groups (new; 3%-17% vs conventional; 7%-14% according to the definitions). There was no mortality and re-admission. Late complications were also rarely seen.CONCLUSION: A pancreaticojejunostomy using an irradiated polyglactin 910 suture material and a temporary stent is easy to perform and is feasible even in cases with a narrow pancreatic duct and a normal soft pancreas.
基金supported by the US Department of Energy’s Nuclear Energy Advanced Modeling and Simulation(NEAMS)Program in Pacific Northwest National Laboratory(PNNL),which is operated by Battelle Memorial Institute for the US Department of Energy under Contract No.DE-AC05-76RL01830.
文摘Complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature.This paper evaluates the role of the phase field method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical,thermal,and magnetic properties.The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials.Then,the phase field method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiated nuclear materials are reviewed.The review shows that(1)Phase field models can correctly describe important phenomena such as spatial-dependent generation,migration,and recombination of defects,radiation-induced dissolution,the Soret effect,strong interfacial energy anisotropy,and elastic interaction;(2)The phase field method can qualitatively and quantitatively simulate two-dimensional and three-dimensional microstructure evolution,including radiation-induced segregation,second phase nucleation,void migration,void and gas bubble superlattice formation,interstitial loop evolution,hydrate formation,and grain growth,and(3)The Phase field method correctly predicts the relationships between microstructures and properties.The final section is dedicated to a discussion of the strengths and limitations of the phase field method,as applied to irradiation effects in nuclear materials.
基金This work was supported by the National Natural Science Foundation Regional Innovation and Development(No.U19A2003)National Major Scientific and Technological Special Project for“Significant New Drugs Development”(No.2018ZX09733001)+1 种基金Excellent Youth Foundation of the Sichuan Scientific Committee Grant in China(No.2019JDJQ008)Development Program of China(No.2016YFA0201402).
文摘Exposure to ionizing radiation,a physical treatment that inactivates live tumor cells,has been extensively applied to enhance the antitumor responses induced by cancer cell vaccines in both animal research and human clinical trials.However,the mechanisms by which irradiated cells function as immunogenic tumor vaccines and induce effective antitumor responses have not been fully explored.Here,we demonstrate that oxidized mitochondrial DNA(mtDNA)and stimulator of interferon genes(STING)signaling play a key roles in the enhanced antitumor effect achieved with an irradiated tumor cell vaccine.Elevations in ROS and oxidized mtDNA 8-OHG content could be induced in irradiated tumor cells.Oxidized mtDNA derived from irradiated tumor cells gained access to the cytosol of dendritic cells(DCs).Oxidized mtDNA,as a DAMP or adjuvant,activated the STING-TBK1-IRF3-IFN-β pathway in DCs,which subsequently cross-presented irradiated tumor cell-derived antigens to CD8^(+)T cells and elicited antitumor immunity.The results of our study provide insight into the mechanism by which an irradiated cell vaccine mediates antitumor immunity,which may have implications for new strategies to improve the efficacy of irradiated vaccines.
基金supported by the National Natural Science Foundation of China(Nos.52173065,51932007,22278324,52073223,22262012 and U1905215)China Postdoctoral Science Foundation(No.2022M710137)the Natural Science Foundation of Hubei Province of China(No.2022CFA001).
文摘Photocatalytic H_(2)O_(2)production provides a clean and sustainable strategy for artificial photosynthesis.Herein,an inorganic/organic composite photocatalyst was fabricated by in-situ growth of CdS nanoparticles on the surface of resorcinol-formaldehyde(RF)resin spheres.RF spheres played multiple roles:(i)acting as a substrate for the growth of CdS and constructing a core-shell structure with seamless con-tact;(ⅱ)improving visible light absorption of CdS;(ⅲ)forming an S-scheme heterojunction with CdS and promoting the charge separation and transfer.Consequently,under visible light illumination,CdS/RF composite presented remarkably enhanced H_(2)O_(2)production activity.Its H_(2)O_(2)yield in 60 min was 801μmol L^(-1),which was 5.2 and 1.5 times higher than that of RF spheres and CdS hollow spheres,respectively.The charge migration between CdS and RF followed the S-scheme photocatalytic mechanism,which was verified by work function measurement,ex-situ and in-situ irradiated X-ray photoelectron spectroscopy.This work brings a novel insight into designing RF-based inorganic/organic S-scheme heterojunction pho-tocatalysts for efficient H_(2)O_(2)production.
基金financially supported by the National Natural Science Foundation of China(Nos.51872221 and 21771142)the Fundamental Research Funds for the Central Universities(No.WUT 2019IB002)。
文摘Exploiting efficient and low-cost cocatalyst with a facile grafting strategy is of critical importance for significantly boosting the photocatalytic H2-evolution activity.In this study,S2^--adsorbed MoSx nanoparticle as a superior H2-evolutoin cocatalyst was successfully grafted on the TiO2 surface to greatly boost its photocatalytic activity via one-step lactic acid-induced synthesis strategy.Herein,the lactic acid can induce the homogeneous production of amorphous MoSx(a-MoSx)nanoparticles from MoS42-precursor,while the symbiotic S2^-ions can be easily and availably self-adsorbed on the a-Mo Sxsurface,resulting in the formation of S2^--adsorbed a-Mo Sxnanoparticles with a small size of 0.5-3 nm.Photocatalytic results manifested that the S2^--adsorbed Mo Sxnanoparticles could dramatically facilitate the H2-generation rate of TiO2 photocatalysts(3452μmol h^-1 g^-1,AQE=16.5%).In situ irradiated XPS in conjunction with transient-state PL and photoelectrochemical tests reveal that the improved H_(2)-generation activity can be ascribed to the synergistic effect of boosted interfacial charge transfer from TiO_(2) to S^(2-)adsorbed Mo Sx and the superior H_(2)-evolution reaction on self-adsorbed S_(2-)ions.In addition,the S^(2-)-adsorbed Mo Sx nanoparticles can also act as the general H_(2)-generation cocatalyst to obviously promote the activity of other typical host photocatalysts such as g-C_(3) N_(4) and Cd S.This work provides an innovative approach to develop high-efficiency Mo Sx-based cocatalyst with boosted interfacial charge transfer toward highly efficient photocatalytic materials.
基金supported by the Russian Science Foundation under Project No.21-11-00102。
文摘Collision of laser-driven subrelativistic high-density ion flows provides a way to create extremely compressed ion conglomerates and study their properties.This paper presents a theoretical study of the electrodynamic implosion of ions inside a hollow spherical or cylindrical shell irradiated by femtosecond petawatt laser pulses.We propose to apply a very effective mechanism for ion acceleration in a self-consistent field with strong charge separation,based on the oscillation of laser-accelerated fast electrons in this field near the thin shell.Fast electrons are generated on the outer side of the shell under irradiation by the intense laser pulses.It is shown that ions,in particular protons,may be accelerated at the implosion stage to energies of tens and hundreds of MeV when a sub-micrometer shell is irradiated by femtosecond laser pulses with an intensity of 10^(21)–10^(23)W cm^(−2).
基金supported by the National Natural Science Foundation of China(Nos.51475482,51475481,51335011,and 91323301)the Fundamental Research Funds for the Central Universities of Central South University
文摘A fused silica glass micro-channel can be formed by chemical etching after femtosecond laser irradiation, and the successful etching probability is only 48%. In order to improve the micro-channel fabrication success probability,the method of processing a high-temperature lattice by a femtosecond laser pulse train is provided. With the same pulse energy and scanning speed, the success probability can be increased to 98% by optimizing pulse delay.The enhancement is mainly caused by the nanostructure, which changes from a periodic slabs structure to some intensive and loose pore structures. In this Letter, the optimum pulse energy distribution ratio to the etching is also investigated.
基金This work was supported by the NSFC innovation group project(Grant No.11921006)the National Grand Instrument Project(Grant No.2019YFF01014402)+1 种基金the United States Department of Energy(Grant No.DE-FG03-93ER40773)the NNSA(Grant No.DENA0003841)(CENTAUR).The PIC simulations were carried out using the High-Performance Computing Platform of Peking University。
文摘In this work,the high-energy-density plasmas(HEDP)evolved from joule-class-femtosecond-laser-irradiated nanowire-array(NWA)targets were numerically and experimentally studied.The results of particle-in-cell simulations indicate that ions accelerated in the sheath field around the surfaces of the nanowires are eventually confined in a plasma,contributing most to the high energy densities.The protons emitted from the front surfaces of the NWA targets provide rich information about the interactions that occur.We give the electron and ion energy densities for broad target parameter ranges.The ion energy densities from NWA targets were found to be an order of magnitude higher than those from planar targets,and the volume of the HEDP was several-fold greater.At optimal target parameters,8%of the laser energy can be converted to confined protons,and this results in ion energy densities at the GJ/cm^(3) level.In the experiments,the measured energy of the emitted protons reached 4 MeV,and the changes in energy with the NWA’s parameters were found to fit the simulation results well.Experimental measurements of neutrons from 2H(d,n)3He fusion with a yield of(24±18)×10^(6)/J from deuterated polyethylene NWA targets also confirmed these results.
基金supported by the Special Fund for Agro-Scientific Research in the Public Interest, China(201103007)
文摘In this paper, toxicity and safety of high-dose irradiated chicken-breast meat were evaluated. For assays of acute toxicity, genetic toxicity, and sub-chronic toxicity, ames test, mice bone marrow erythrocyte micronucleus, and mice sperm abnormality were performed. The results showed that, in the acute oral toxicity tests, median lethal dose (more than 10 000 mg kg-~) in male and female ICR mice showed no toxicological signs. For subacute 30-d oral toxicology of irradiated chicken-breast meat with dose of 10, 15 and 25 kGy in both male and female SD rats, no noticeable toxicological effects were observed. It is concluded that chicken-breast meat with high-dose irradiation has no acute toxicity and no genotoxicity, nor harmful effects on the animal body at the tested dosage range. Therefore, high-dose irradiated chicken-breast meat is safe for pet consumption.
文摘In this work, Automated Ball Indentation (ABI) technique is based on load controlled multiple indentations (at a single penetration location) of a polished surface by a spherical indenter (0.7 to 1.46 mm) and indentation depth is progressively increased to a maximum user specified limit with intermediate partial unloading. This technique permits measurement of yield strength, stress-strain curve, strength coefficient and strain hardening exponent. ABI Testing was carried out on samples of Zr-Nb2.5 (Pressure Tube Material) with different heat treatment conditions in which temperature was varying (550 degree to 900 degree and retention time was varying 0.5 to 6 hour and furnace cooled. For all these test material and conditions, the ABI derived results were in very good agreement with those from conventional standard test methods.