Isothermal and cyclic oxidation behaviours of pure and yttrium-implanted nickel were studied at 1000℃ in air. Scanning electronic microscopy (SEM) and transmission electronic microscopy (TEM) were used to examine...Isothermal and cyclic oxidation behaviours of pure and yttrium-implanted nickel were studied at 1000℃ in air. Scanning electronic microscopy (SEM) and transmission electronic microscopy (TEM) were used to examine the micro-morphology and structure of oxide scales formed on the nickel substrate. It was found that Y-implantation significantly improved the anti- oxidation ability of nickel in both isothermal and cyclic oxidizing experiments. Laser Raman microscopy was also used to study the stress status of oxide scales formed on nickel with and without yttrium. The main reason for the improvement in anti-oxidation of nickel was that Y- implantation greatly reduced the growing speed and grain size of NiO. This fine-grained NiO oxide film might have better high temperature plasticity and could relieve parts of compressive stress by means of creeping, and maintained a ridge character and a relatively low internal stress level. Hence yttrium ion-implantation remarkably enhanced the adhesion of protective NiO oxide scale formed on the nickel substrate.展开更多
Silver foils and ion-implanted silver foils exposed to atomic oxygen (AO) generated in a ground simulation facility were investigated by the quartz crystal microbalance (QCM), the scanning electron microscopy (SE...Silver foils and ion-implanted silver foils exposed to atomic oxygen (AO) generated in a ground simulation facility were investigated by the quartz crystal microbalance (QCM), the scanning electron microscopy (SEM) and the X-ray photoelectron spectroscopy (XPS). The experimental results show the presence of Ag2O and AgO in an oxidation process of the silver foil having exposure to AO. As soon as silver comes under the bombardment of atomic oxygen, the oxidation process starts with a thick film forming on the silver surface. Because of the development of stresses, the oxide layer gets cracked and spalled, which leads to appearance of a new silver surface intensifying further oxidation. At last, AgO begins to form on the outer surface of the oxide film. The analytical results of the XPS and the AES attest to formation of a continuous high-quality protective oxide-based layer on the surface of ion-implanted silver films after exposure to AO. This layer can well protect materials in question from erosion.展开更多
Single GaAs/Al0.5Ga0.5As V-grooved quantum wire modified by selective ion-implantation and rapid thermally annealing was investigated by spatially-resolved microphotoluminescence and magneto-resistance measurement. Sp...Single GaAs/Al0.5Ga0.5As V-grooved quantum wire modified by selective ion-implantation and rapid thermally annealing was investigated by spatially-resolved microphotoluminescence and magneto-resistance measurement. Spatially-resolved photoluminescence results indicate that the ion-implantation induced quantum well intermixing raises significantly the electron subband energies of the side quantum wells and vertical quantum wells, and more efficient accumulation of electrons in the quantum wires is achieved. Furthermore, the polarization properties of the photoluminescence from the quantum wires show large linear polarization degree up to 63%. Magneto- transport investigation on the ion implanted quantum wire samples presents the quasi-one dimensional intrinsic motion of electrons, which is important for the design and optimization of one dimensional electronic devices.展开更多
In order to reduce deep level defects, the theory and process design of 4H-SiC homoepitaxial layer implanted by carbon ion are studied. With the Monte Carlo simulator TRIM, the ion implantation range, location of peak...In order to reduce deep level defects, the theory and process design of 4H-SiC homoepitaxial layer implanted by carbon ion are studied. With the Monte Carlo simulator TRIM, the ion implantation range, location of peak concentration and longitudinal straggling of carbon are calculated. The process for improving deep energy level in undoped 4H-SiC homoepitaxial layer by three times carbon ion-implantation is proposed, including implantation energy, dose, the SiO2 resist mask, annealing temperature, annealing time and annealing protection. The deep energy level in 4H-SiC material can be significantly improved by implantation of carbon atoms into a shallow surface layer. The damage of crystal lattice can be repaired well, and the carbon ions are effectively activated after 1 600 ℃ annealing, meanwhile, deep level defects are decreased.展开更多
基金National Natural Science Foundation of China(No.29231011)National Natural Science Foundation of Colombia(No.M018327)
文摘Isothermal and cyclic oxidation behaviours of pure and yttrium-implanted nickel were studied at 1000℃ in air. Scanning electronic microscopy (SEM) and transmission electronic microscopy (TEM) were used to examine the micro-morphology and structure of oxide scales formed on the nickel substrate. It was found that Y-implantation significantly improved the anti- oxidation ability of nickel in both isothermal and cyclic oxidizing experiments. Laser Raman microscopy was also used to study the stress status of oxide scales formed on nickel with and without yttrium. The main reason for the improvement in anti-oxidation of nickel was that Y- implantation greatly reduced the growing speed and grain size of NiO. This fine-grained NiO oxide film might have better high temperature plasticity and could relieve parts of compressive stress by means of creeping, and maintained a ridge character and a relatively low internal stress level. Hence yttrium ion-implantation remarkably enhanced the adhesion of protective NiO oxide scale formed on the nickel substrate.
基金Natural Science Foundation of JX Province (0650035)
文摘Silver foils and ion-implanted silver foils exposed to atomic oxygen (AO) generated in a ground simulation facility were investigated by the quartz crystal microbalance (QCM), the scanning electron microscopy (SEM) and the X-ray photoelectron spectroscopy (XPS). The experimental results show the presence of Ag2O and AgO in an oxidation process of the silver foil having exposure to AO. As soon as silver comes under the bombardment of atomic oxygen, the oxidation process starts with a thick film forming on the silver surface. Because of the development of stresses, the oxide layer gets cracked and spalled, which leads to appearance of a new silver surface intensifying further oxidation. At last, AgO begins to form on the outer surface of the oxide film. The analytical results of the XPS and the AES attest to formation of a continuous high-quality protective oxide-based layer on the surface of ion-implanted silver films after exposure to AO. This layer can well protect materials in question from erosion.
基金supported by the National Natural Science Foundation of China(Grant Nos.10374018 and 10321003)the Scientific Committee of Shanghai(Grant No.03DJ14001)
文摘Single GaAs/Al0.5Ga0.5As V-grooved quantum wire modified by selective ion-implantation and rapid thermally annealing was investigated by spatially-resolved microphotoluminescence and magneto-resistance measurement. Spatially-resolved photoluminescence results indicate that the ion-implantation induced quantum well intermixing raises significantly the electron subband energies of the side quantum wells and vertical quantum wells, and more efficient accumulation of electrons in the quantum wires is achieved. Furthermore, the polarization properties of the photoluminescence from the quantum wires show large linear polarization degree up to 63%. Magneto- transport investigation on the ion implanted quantum wire samples presents the quasi-one dimensional intrinsic motion of electrons, which is important for the design and optimization of one dimensional electronic devices.
基金Supported by the National Natural Science Foundation of China (No. 61006008)Xi'an Applied Materials Innovation Fund (No. XA-AM-200607)
文摘In order to reduce deep level defects, the theory and process design of 4H-SiC homoepitaxial layer implanted by carbon ion are studied. With the Monte Carlo simulator TRIM, the ion implantation range, location of peak concentration and longitudinal straggling of carbon are calculated. The process for improving deep energy level in undoped 4H-SiC homoepitaxial layer by three times carbon ion-implantation is proposed, including implantation energy, dose, the SiO2 resist mask, annealing temperature, annealing time and annealing protection. The deep energy level in 4H-SiC material can be significantly improved by implantation of carbon atoms into a shallow surface layer. The damage of crystal lattice can be repaired well, and the carbon ions are effectively activated after 1 600 ℃ annealing, meanwhile, deep level defects are decreased.