The alpha-7 nicotinic acetylcholine receptor(α7 nAChR), consisting of homomeric α7 subunits, is a ligand-gated Ca^(2+)-permeable ion channel implicated in cognition and neuropsychiatric disorders. Enhancement of α7...The alpha-7 nicotinic acetylcholine receptor(α7 nAChR), consisting of homomeric α7 subunits, is a ligand-gated Ca^(2+)-permeable ion channel implicated in cognition and neuropsychiatric disorders. Enhancement of α7 nAChR function is considered to be a potential therapeutic strategy aiming at ameliorating cognitive deficits of neuropsychiatric disorders such as Alzheimer's disease(AD) and schizophrenia. Currently, a number of α7 nAChR modulators have been reported and several of them have advanced into clinical trials. In this brief review, we outline recent progress made in understanding the role of the α7 nAChR in multiple neuropsychiatric disorders and the pharmacological effects of α7 nAChR modulators used in clinical trials.展开更多
Although humans have spent exactly 100 years combating Alzheimer’s disease (AD), the molecular mechanisms of AD remain unclear. Owing to the rapid growth of the oldest age groups of the popula-tion and the continuous...Although humans have spent exactly 100 years combating Alzheimer’s disease (AD), the molecular mechanisms of AD remain unclear. Owing to the rapid growth of the oldest age groups of the popula-tion and the continuous increase of the incidence of AD, it has become one of the crucial problems to modern sciences. It would be impossible to prevent or reverse AD at the root without elucidating its molecular mechanisms. From the point of view of metal-amyloid-β peptide (Aβ) interactions, we review the molecular mechanisms of AD, mainly including Cu2+ and Zn2+ inducing the aggregation of Aβ, cata-lysing the production of active oxygen species from Aβ, as well as interacting with the ion-channel-like structures of Aβ. Moreover, the development of therapeutic drugs on the basis of metal-Aβ interactions is also briefly introduced. With the increasingly rapid progress of the molecular mechanisms of AD, we are now entering a new dawn that promises the delivery of revolutionary developments for the control of dementias.展开更多
In peripheral artery disease patients,the blood supply directed to the lower limbs is reduced.This results in severe limb ischemia and thereby enhances pain sensitivity in lower limbs.The painful perception is induced...In peripheral artery disease patients,the blood supply directed to the lower limbs is reduced.This results in severe limb ischemia and thereby enhances pain sensitivity in lower limbs.The painful perception is induced and exaggerate during walking,and is relieved by rest.This symptom is termed by intermittent claudication.The limb ischemia also amplifies autonomic responses during exercise.In the process of pain and autonomic responses originating exercising muscle,a number of receptors in afferent nerves sense ischemic changes and send signals to the central nervous system leading to autonomic responses.This review integrates recent study results in terms of perspectives including how nerve growth factor affects muscle sensory nerve receptors in peripheral artery disease and thereby alters responses of sympathetic nerve activity and blood pressure to active muscle.For the sensory nerve receptors,we emphasize the role played by transient receptor potential vanilloid type 1,purinergic P2X purinoceptor 3 and acid sensing ion channel subtype 3 in amplified sympathetic nerve activity responses in peripheral artery disease.展开更多
文摘The alpha-7 nicotinic acetylcholine receptor(α7 nAChR), consisting of homomeric α7 subunits, is a ligand-gated Ca^(2+)-permeable ion channel implicated in cognition and neuropsychiatric disorders. Enhancement of α7 nAChR function is considered to be a potential therapeutic strategy aiming at ameliorating cognitive deficits of neuropsychiatric disorders such as Alzheimer's disease(AD) and schizophrenia. Currently, a number of α7 nAChR modulators have been reported and several of them have advanced into clinical trials. In this brief review, we outline recent progress made in understanding the role of the α7 nAChR in multiple neuropsychiatric disorders and the pharmacological effects of α7 nAChR modulators used in clinical trials.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 30470408 and 20637010)the Youth Foundation of Science and Technology of Shanxi Province (Grant No. 2006021009)
文摘Although humans have spent exactly 100 years combating Alzheimer’s disease (AD), the molecular mechanisms of AD remain unclear. Owing to the rapid growth of the oldest age groups of the popula-tion and the continuous increase of the incidence of AD, it has become one of the crucial problems to modern sciences. It would be impossible to prevent or reverse AD at the root without elucidating its molecular mechanisms. From the point of view of metal-amyloid-β peptide (Aβ) interactions, we review the molecular mechanisms of AD, mainly including Cu2+ and Zn2+ inducing the aggregation of Aβ, cata-lysing the production of active oxygen species from Aβ, as well as interacting with the ion-channel-like structures of Aβ. Moreover, the development of therapeutic drugs on the basis of metal-Aβ interactions is also briefly introduced. With the increasingly rapid progress of the molecular mechanisms of AD, we are now entering a new dawn that promises the delivery of revolutionary developments for the control of dementias.
基金This work was supported by the National Institutes of Health,No.NIH P01 HL134609 and R01 HL141198(to JL).
文摘In peripheral artery disease patients,the blood supply directed to the lower limbs is reduced.This results in severe limb ischemia and thereby enhances pain sensitivity in lower limbs.The painful perception is induced and exaggerate during walking,and is relieved by rest.This symptom is termed by intermittent claudication.The limb ischemia also amplifies autonomic responses during exercise.In the process of pain and autonomic responses originating exercising muscle,a number of receptors in afferent nerves sense ischemic changes and send signals to the central nervous system leading to autonomic responses.This review integrates recent study results in terms of perspectives including how nerve growth factor affects muscle sensory nerve receptors in peripheral artery disease and thereby alters responses of sympathetic nerve activity and blood pressure to active muscle.For the sensory nerve receptors,we emphasize the role played by transient receptor potential vanilloid type 1,purinergic P2X purinoceptor 3 and acid sensing ion channel subtype 3 in amplified sympathetic nerve activity responses in peripheral artery disease.