An important tectonic inversion took place in eastern North China Block(NCB) during Mesozoic, which caused a great lithosphere thinning, reconstruction of basin-range series, powerful interaction between mantle and cr...An important tectonic inversion took place in eastern North China Block(NCB) during Mesozoic, which caused a great lithosphere thinning, reconstruction of basin-range series, powerful interaction between mantle and crust, a vast granitic intrusion and volcanism, and large-scale metallogenic explosion. The time range of the Mesozoic tectonic regime inversion in the eastern North China Block is one of the key issues to understand mechanism of tectonic regime inversion. Our updated results for recognizing the time range are mainly obtained from the following aspects: structural analyses along northern and southern margins of the NCB and within the NCB for revealing tectonic inversion from compression to extension and structural striking from ~EW to NNE; geothermic analyses of the eastern sedimental basins for a great change of thermal history and regime; basin analysis for basin inversion from compression to extension and basin migration from ~EW to NNE; petrological and geochemical studies of volcanic rocks and lowermost crust xenoliths for recognizing peak period of mantle upwelling and intense interaction between mantle and crust, and main metallogenic epoch. All the studies of the above give the same time range from~150-140 Ma to ~110-100Ma, peaking at ~120 Ma.展开更多
Because of the combination of optimization algorithms and full wave equations, full-waveform inversion(FWI) has become the frontier of the study of seismic exploration and is gradually becoming one of the essential to...Because of the combination of optimization algorithms and full wave equations, full-waveform inversion(FWI) has become the frontier of the study of seismic exploration and is gradually becoming one of the essential tools for obtaining the Earth interior information. However, the application of conventional FWI to pure reflection data in the absence of a highly accurate starting velocity model is difficult. Compared to other types of seismic waves, reflections carry the information of the deep part of the subsurface. Reflection FWI, therefore, is able to improve the accuracy of imaging the Earth interior further. Here, we demonstrate a means of achieving this successfully by interleaving least-squares RTM with a version of reflection FWI in which the tomographic gradient that is required to update the background macro-model is separated from the reflectivity gradient using the Born approximation during forward modeling. This provides a good update to the macro-model. This approach is then followed by conventional FWI to obtain a final high-fidelity high-resolution result from a poor starting model using only reflection data.Further analysis reveals the high-resolution result is achieved due to a deconvolution imaging condition implicitly used by FWI.展开更多
Leaf area index (LAI) is an important parameter in monitoring crop growth. One of the methods for retrieving LAI from remotely sensed observations is through inversion of canopy reflectance models. Many model inversio...Leaf area index (LAI) is an important parameter in monitoring crop growth. One of the methods for retrieving LAI from remotely sensed observations is through inversion of canopy reflectance models. Many model inversion methods fail to account for variable LAI values at different crop growth stages. In this research, we use the crop growth model to describe the LAI changes with crop growth, and consider a priori LAI values at different crop growth stages as constraint information. The key approach of this research is to assimilate multiple canopy reflectance values observed at different growth stages and a priori LAI values into a coupled crop growth and radiative transfer model sequentially using a variational data assimilation algorithm. Adjoint method is used to minimize the cost function. Any other information source can be easily incorporated into the inversion cost function. The validation results show that the time series of MODIS canopy reflectance can greatly reduce the uncertainty of the inverted LAI values. Compared with MODIS LAI product at Changping and Shunyi Counties of Beijing, this method has significantly improved the estimated LAI temporal profile.展开更多
Full-waveform inversion(FWI)utilizes optimization methods to recover an optimal Earth model to best fit the observed seismic record in a sense of a predefined norm.Since FWI combines mathematic inversion and full-wave...Full-waveform inversion(FWI)utilizes optimization methods to recover an optimal Earth model to best fit the observed seismic record in a sense of a predefined norm.Since FWI combines mathematic inversion and full-wave equations,it has been recognized as one of the key methods for seismic data imaging and Earth model building in the fields of global/regional and exploration seismology.Unfortunately,conventional FWI fixes background velocity mainly relying on refraction and turning waves that are commonly rich in large offsets.By contrast,reflections in the short offsets mainly contribute to the reconstruction of the high-resolution interfaces.Restricted by acquisition geometries,refractions and turning waves in the record usually have limited penetration depth,which may not reach oil/gas reservoirs.Thus,reflections in the record are the only source that carries the information of these reservoirs.Consequently,it is meaningful to develop reflection-waveform inversion(RWI)that utilizes reflections to recover background velocity including the deep part of the model.This review paper includes:analyzing the weaknesses of FWI when inverting reflections;overviewing the principles of RWI,including separation of the tomography and migration components,the objective functions,constraints;summarizing the current status of the technique of RWI;outlooking the future of RWI.展开更多
Amplitude variations with offset or incident angle (AVO/AVA) inversion are typically combined with statistical methods, such as Bayesian inference or deterministic inversion. We propose a joint elastic inversion met...Amplitude variations with offset or incident angle (AVO/AVA) inversion are typically combined with statistical methods, such as Bayesian inference or deterministic inversion. We propose a joint elastic inversion method in the time and frequency domain based on Bayesian inversion theory to improve the resolution of the estimated P- and S-wave velocities and density. We initially construct the objective function using Bayesian inference by combining seismic data in the time and frequency domain. We use Cauchy and Gaussian probability distribution density functions to obtain the prior information for the model parameters and the likelihood function, respectively. We estimate the elastic parameters by solving the initial objective function with added model constraints to improve the inversion robustness. The results of the synthetic data suggest that the frequency spectra of the estimated parameters are wider than those obtained with conventional elastic inversion in the time domain. In addition, the proposed inversion approach offers stronger antinoising compared to the inversion approach in the frequency domain. Furthermore, results from synthetic examples with added Gaussian noise demonstrate the robustness of the proposed approach. From the real data, we infer that more model parameter details can be reproduced with the proposed joint elastic inversion.展开更多
Offshore carbon capture, utilization, and storage(OCCUS) is regarded as a crucial technology for mitigating greenhouse gas emissions.Quantitative monitoring maps of sealed carbon dioxide are necessary in a comprehensi...Offshore carbon capture, utilization, and storage(OCCUS) is regarded as a crucial technology for mitigating greenhouse gas emissions.Quantitative monitoring maps of sealed carbon dioxide are necessary in a comprehensive OCCUS project. A potential high-resolution method for the aforementioned purpose lies in the full-waveform inversion(FWI) of time-lapse seismic data. However, practical applications of FWI are severely restricted by the well-known cycle-skipping problem. A new time-lapse FWI method using cross-correlation-based dynamic time warping(CDTW) is proposed to detect changes in the subsurface property due to carbon dioxide(CO_(2)) injection and address the aforementioned issue. The proposed method, namely CDTW, which combines the advantages of cross-correlation and dynamic time warping, is employed in the automatic estimation of the discrepancy between the seismic signals simulated using the baseline/initial model and those acquired. The proposed FWI method can then back-project the estimated discrepancy to the subsurface space domain, thereby facilitating retrieval of the induced subsurface property change by taking the difference between the inverted baseline and monitor models. Numerical results on pairs of signals prove that CDTW can obtain reliable shifts under amplitude modulation and noise contamination conditions. The performance of CDTW substantially outperforms that of the conventional dynamic time warping method. The proposed time-lapse fullwaveform inversion(FWI) method is applied to the Frio-2 CO_(2) storage model. The baseline and monitor models are inverted from the corresponding time-lapse seismic data. The changes in velocity due to CO_(2) injection are reconstructed by the difference between the baseline and the monitor models.展开更多
基金This work was jointly supported by the Chinese Academy of Sciences (Grant No. KZCX1-07) the Ministry of Science and Technology of China (Grant No. G1999402307)the National Natural Science Foundation of China (Grant. No. 40234050).
文摘An important tectonic inversion took place in eastern North China Block(NCB) during Mesozoic, which caused a great lithosphere thinning, reconstruction of basin-range series, powerful interaction between mantle and crust, a vast granitic intrusion and volcanism, and large-scale metallogenic explosion. The time range of the Mesozoic tectonic regime inversion in the eastern North China Block is one of the key issues to understand mechanism of tectonic regime inversion. Our updated results for recognizing the time range are mainly obtained from the following aspects: structural analyses along northern and southern margins of the NCB and within the NCB for revealing tectonic inversion from compression to extension and structural striking from ~EW to NNE; geothermic analyses of the eastern sedimental basins for a great change of thermal history and regime; basin analysis for basin inversion from compression to extension and basin migration from ~EW to NNE; petrological and geochemical studies of volcanic rocks and lowermost crust xenoliths for recognizing peak period of mantle upwelling and intense interaction between mantle and crust, and main metallogenic epoch. All the studies of the above give the same time range from~150-140 Ma to ~110-100Ma, peaking at ~120 Ma.
基金supported by the National Natural Science Foundation of China(Grant No.41504106&41274099)the Science Foundation of China University of Petroleum(Beijing)(Grant No.2462015YJRC012)State Laboratory of Petroleum Resource and Prospecting(Grant No.PRP/indep-3-1508)
文摘Because of the combination of optimization algorithms and full wave equations, full-waveform inversion(FWI) has become the frontier of the study of seismic exploration and is gradually becoming one of the essential tools for obtaining the Earth interior information. However, the application of conventional FWI to pure reflection data in the absence of a highly accurate starting velocity model is difficult. Compared to other types of seismic waves, reflections carry the information of the deep part of the subsurface. Reflection FWI, therefore, is able to improve the accuracy of imaging the Earth interior further. Here, we demonstrate a means of achieving this successfully by interleaving least-squares RTM with a version of reflection FWI in which the tomographic gradient that is required to update the background macro-model is separated from the reflectivity gradient using the Born approximation during forward modeling. This provides a good update to the macro-model. This approach is then followed by conventional FWI to obtain a final high-fidelity high-resolution result from a poor starting model using only reflection data.Further analysis reveals the high-resolution result is achieved due to a deconvolution imaging condition implicitly used by FWI.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40871163, 40571107)the Beijing Natural Science Foundation (Grant No. 4083035)+1 种基金the National Basic Research Program of China (Grant No. 2007CB714407)the Program for Key International Science and Tech-nique Cooperation Project of China (Grant No. 2004DFA06300)
文摘Leaf area index (LAI) is an important parameter in monitoring crop growth. One of the methods for retrieving LAI from remotely sensed observations is through inversion of canopy reflectance models. Many model inversion methods fail to account for variable LAI values at different crop growth stages. In this research, we use the crop growth model to describe the LAI changes with crop growth, and consider a priori LAI values at different crop growth stages as constraint information. The key approach of this research is to assimilate multiple canopy reflectance values observed at different growth stages and a priori LAI values into a coupled crop growth and radiative transfer model sequentially using a variational data assimilation algorithm. Adjoint method is used to minimize the cost function. Any other information source can be easily incorporated into the inversion cost function. The validation results show that the time series of MODIS canopy reflectance can greatly reduce the uncertainty of the inverted LAI values. Compared with MODIS LAI product at Changping and Shunyi Counties of Beijing, this method has significantly improved the estimated LAI temporal profile.
文摘瞬变电磁一维反演方法对初始模型依赖大,对异常体边界反映不清晰,计算速度也难以达到实时化水平.为此,本文开展基于深度学习的瞬变电磁实时反演方法研究,提出在非观测时间段进行反演训练,而在观测时间段进行实时精细成像的瞬变电磁长短时记忆网络反演策略.以正演模拟获得的海量采样时间-视电阻率为输入数据,基于长短时记忆网络构造Seq2seq编码器-解码器模型,并针对瞬变电磁反演的问题特性,对decoder的结构进行适应性更改,同时加入Bahdanau Attention机制突出重点信息作用,获得深度-电阻率输出数据.将该反演网络应用于随机生成的数万组以上三层和五层地电模型,测试组三大衡量指标标准差均小于10%,验证了本文算法的可靠性,在此基础上,构建了接近实际的两组含局部异常体模型,将该反演网络进一步用于三维数值模拟数据,取得了对异常体边界反映清晰的成像结果,且计算速度均小于1 s.
基金supported by National Key R&D Program of China(No.2018YFA0702502)NSFC(Grant No.41974142)Science Foundation of China University of petroleum,Beijing(No.2462019YJRC005).
文摘Full-waveform inversion(FWI)utilizes optimization methods to recover an optimal Earth model to best fit the observed seismic record in a sense of a predefined norm.Since FWI combines mathematic inversion and full-wave equations,it has been recognized as one of the key methods for seismic data imaging and Earth model building in the fields of global/regional and exploration seismology.Unfortunately,conventional FWI fixes background velocity mainly relying on refraction and turning waves that are commonly rich in large offsets.By contrast,reflections in the short offsets mainly contribute to the reconstruction of the high-resolution interfaces.Restricted by acquisition geometries,refractions and turning waves in the record usually have limited penetration depth,which may not reach oil/gas reservoirs.Thus,reflections in the record are the only source that carries the information of these reservoirs.Consequently,it is meaningful to develop reflection-waveform inversion(RWI)that utilizes reflections to recover background velocity including the deep part of the model.This review paper includes:analyzing the weaknesses of FWI when inverting reflections;overviewing the principles of RWI,including separation of the tomography and migration components,the objective functions,constraints;summarizing the current status of the technique of RWI;outlooking the future of RWI.
基金supported by the National Nature Science Foundation Project(Nos.41604101 and U1562215)the National Grand Project for Science and Technology(No.2016ZX05024-004)+2 种基金the Natural Science Foundation of Shandong(No.BS2014NJ005)Science Foundation from SINOPEC Key Laboratory of Geophysics(No.33550006-15-FW2099-0027)the Fundamental Research Funds for the Central Universities
文摘Amplitude variations with offset or incident angle (AVO/AVA) inversion are typically combined with statistical methods, such as Bayesian inference or deterministic inversion. We propose a joint elastic inversion method in the time and frequency domain based on Bayesian inversion theory to improve the resolution of the estimated P- and S-wave velocities and density. We initially construct the objective function using Bayesian inference by combining seismic data in the time and frequency domain. We use Cauchy and Gaussian probability distribution density functions to obtain the prior information for the model parameters and the likelihood function, respectively. We estimate the elastic parameters by solving the initial objective function with added model constraints to improve the inversion robustness. The results of the synthetic data suggest that the frequency spectra of the estimated parameters are wider than those obtained with conventional elastic inversion in the time domain. In addition, the proposed inversion approach offers stronger antinoising compared to the inversion approach in the frequency domain. Furthermore, results from synthetic examples with added Gaussian noise demonstrate the robustness of the proposed approach. From the real data, we infer that more model parameter details can be reproduced with the proposed joint elastic inversion.
文摘Offshore carbon capture, utilization, and storage(OCCUS) is regarded as a crucial technology for mitigating greenhouse gas emissions.Quantitative monitoring maps of sealed carbon dioxide are necessary in a comprehensive OCCUS project. A potential high-resolution method for the aforementioned purpose lies in the full-waveform inversion(FWI) of time-lapse seismic data. However, practical applications of FWI are severely restricted by the well-known cycle-skipping problem. A new time-lapse FWI method using cross-correlation-based dynamic time warping(CDTW) is proposed to detect changes in the subsurface property due to carbon dioxide(CO_(2)) injection and address the aforementioned issue. The proposed method, namely CDTW, which combines the advantages of cross-correlation and dynamic time warping, is employed in the automatic estimation of the discrepancy between the seismic signals simulated using the baseline/initial model and those acquired. The proposed FWI method can then back-project the estimated discrepancy to the subsurface space domain, thereby facilitating retrieval of the induced subsurface property change by taking the difference between the inverted baseline and monitor models. Numerical results on pairs of signals prove that CDTW can obtain reliable shifts under amplitude modulation and noise contamination conditions. The performance of CDTW substantially outperforms that of the conventional dynamic time warping method. The proposed time-lapse fullwaveform inversion(FWI) method is applied to the Frio-2 CO_(2) storage model. The baseline and monitor models are inverted from the corresponding time-lapse seismic data. The changes in velocity due to CO_(2) injection are reconstructed by the difference between the baseline and the monitor models.