The carbonate reservoirs in the Tarim Basin are characterized by anisotropy and strong heterogeneity.Combined with an integrated analysis of data from seismic,geology,and drilling results,a series of attributes which ...The carbonate reservoirs in the Tarim Basin are characterized by anisotropy and strong heterogeneity.Combined with an integrated analysis of data from seismic,geology,and drilling results,a series of attributes which are suitable for fractured and caved carbonate reservoir prediction is discussed,including amplitude,coherence analysis,spectra decomposition,seismic absorption attenuation analysis and impedance inversion.Moreover,3-D optimization of these attributes is achieved by integration of multivariate discriminant analysis and principle component analysis,where the logging data are taken as training samples.Using the optimized results,the spatial distribution and configuration features of the caved reservoirs can be characterized in detail.This technique not only improves the understanding of the spatial distribution of current reservoirs but also provides a significant basis for the discovery and production of carbonate reservoirs in the Tarim Basin.展开更多
In this paper, we propose the novel method of complex least squares adjustment (CLSA) to invert vegetation height accurately using single-baseline polarimetric synthetic aperture radar interferometry (PollnSAR) da...In this paper, we propose the novel method of complex least squares adjustment (CLSA) to invert vegetation height accurately using single-baseline polarimetric synthetic aperture radar interferometry (PollnSAR) data. CLSA basically estimates both volume-only coherence and ground phase directly without assuming that the ground-to-volume amplitude radio of a particular polarization channel (e.g., HV) is less than -10 dB, as in the three-stage method. In addition, CLSA can effectively limit errors in interferometric complex coherence, which may translate directly into erroneous ground-phase and volume-only coherence estimations. The proposed CLSA method is validated with BioSAR2008 P-band E-SAR and L-band SIR-C PollnSAR data. Its results are then compared with those of the traditional three-stage method and with external data. It implies that the CLSA method is much more robust than the three-stage method.展开更多
Three-dimensional gravity inversion based on the mass property model is very popular in recent years. The time and efficiency of inversion algorithms is relative to the magnitude of the target mesh. One approach is to...Three-dimensional gravity inversion based on the mass property model is very popular in recent years. The time and efficiency of inversion algorithms is relative to the magnitude of the target mesh. One approach is to search over the entire solution space for a more refined result. However, the inversion will be difficult with the increased parameters in the large search space and the number of computations increases exponentially. |n this paper, we propose a novel approach based on the frequency characteristics of the density distribution over the mesh. The purposes of our study are to reduce the parameters of three- dimensional gravity inversion and to lighten the image quality of the inversion result. The results show that the new method can expedite the inversion processing and get a better geological interpretation than tradition methods.展开更多
NaI(T1) scintillation detectors have been widely applied for gamma-ray spectrum measurements owing to advantages such as high detection efficiency and low price.However,the mitigation of the limited energy resolution ...NaI(T1) scintillation detectors have been widely applied for gamma-ray spectrum measurements owing to advantages such as high detection efficiency and low price.However,the mitigation of the limited energy resolution of these detectors,which detracts from an accurate analysis of the instrument spectra obtained,remains a crucial need.Based on the physical properties and spectrum formation processes of NaI(T1) scintillation detectors,the detector response to gamma photons with different energies is represented by photopeaks that are approximately Gaussian in shape with unique full-width-at-half-maximum(FWHM) values.The FWHM is established as a detector parameter based on resolution calibrations and is used in the construction of a general Gaussian response matrix,which is employed for the inverse decomposition of gamma spectra obtained from the detector.The Gold and Boosted Gold iterative algorithms are employed to accelerate the decomposition of the measured spectrum.Tests of the inverse decomposition method on multiple simulated overlapping peaks and on experimentally obtained U and Th radionuclide series spectra verify the practicability of the method,particularly in the low-energy region of the spectrum,providing for the accurate qualitative and quantitative analysis of radionuclides.展开更多
基金co-supported by the National Basic Resarch Program of China (Grant No.2011CB201103)the National Scince and Technology Major Project (Grant No.2011ZX05004003)
文摘The carbonate reservoirs in the Tarim Basin are characterized by anisotropy and strong heterogeneity.Combined with an integrated analysis of data from seismic,geology,and drilling results,a series of attributes which are suitable for fractured and caved carbonate reservoir prediction is discussed,including amplitude,coherence analysis,spectra decomposition,seismic absorption attenuation analysis and impedance inversion.Moreover,3-D optimization of these attributes is achieved by integration of multivariate discriminant analysis and principle component analysis,where the logging data are taken as training samples.Using the optimized results,the spatial distribution and configuration features of the caved reservoirs can be characterized in detail.This technique not only improves the understanding of the spatial distribution of current reservoirs but also provides a significant basis for the discovery and production of carbonate reservoirs in the Tarim Basin.
基金supported by the National Basic Research Program of China(Grant No.2013CB733303)National Natural Science Foundation of China(Grant Nos.41274010,41371335)supported by PA-SB ESA EO Project Campaign of"Development of methods for Forest Biophysical Parameters Inversion Using POLIn SAR Data"(Grant No.ID.14655)
文摘In this paper, we propose the novel method of complex least squares adjustment (CLSA) to invert vegetation height accurately using single-baseline polarimetric synthetic aperture radar interferometry (PollnSAR) data. CLSA basically estimates both volume-only coherence and ground phase directly without assuming that the ground-to-volume amplitude radio of a particular polarization channel (e.g., HV) is less than -10 dB, as in the three-stage method. In addition, CLSA can effectively limit errors in interferometric complex coherence, which may translate directly into erroneous ground-phase and volume-only coherence estimations. The proposed CLSA method is validated with BioSAR2008 P-band E-SAR and L-band SIR-C PollnSAR data. Its results are then compared with those of the traditional three-stage method and with external data. It implies that the CLSA method is much more robust than the three-stage method.
基金supported by the Key Project Fund of the Chinese Academy of Sciences under grant number (kzcx2-yw-203-01)the Major State Basic Research Development Program of China(973 Program,Grant No.2007CB41170404)
文摘Three-dimensional gravity inversion based on the mass property model is very popular in recent years. The time and efficiency of inversion algorithms is relative to the magnitude of the target mesh. One approach is to search over the entire solution space for a more refined result. However, the inversion will be difficult with the increased parameters in the large search space and the number of computations increases exponentially. |n this paper, we propose a novel approach based on the frequency characteristics of the density distribution over the mesh. The purposes of our study are to reduce the parameters of three- dimensional gravity inversion and to lighten the image quality of the inversion result. The results show that the new method can expedite the inversion processing and get a better geological interpretation than tradition methods.
基金supported by the National Natural Science Foundation of China(Grant No.11365001)National Major Scientific Equipment Development Projects(Grant No.041514065)+2 种基金the Educational Commission of Jiangxi Province of China(Grant No.GJJ13464)Plan of Science and Technology of Jiangxi Province(Grant No.20141BBE50024)the Fundamental Science on Radioactive Geology and Exploration Technology Laboratory,East China Institute of Technology(Grant No.RGET1316)
文摘NaI(T1) scintillation detectors have been widely applied for gamma-ray spectrum measurements owing to advantages such as high detection efficiency and low price.However,the mitigation of the limited energy resolution of these detectors,which detracts from an accurate analysis of the instrument spectra obtained,remains a crucial need.Based on the physical properties and spectrum formation processes of NaI(T1) scintillation detectors,the detector response to gamma photons with different energies is represented by photopeaks that are approximately Gaussian in shape with unique full-width-at-half-maximum(FWHM) values.The FWHM is established as a detector parameter based on resolution calibrations and is used in the construction of a general Gaussian response matrix,which is employed for the inverse decomposition of gamma spectra obtained from the detector.The Gold and Boosted Gold iterative algorithms are employed to accelerate the decomposition of the measured spectrum.Tests of the inverse decomposition method on multiple simulated overlapping peaks and on experimentally obtained U and Th radionuclide series spectra verify the practicability of the method,particularly in the low-energy region of the spectrum,providing for the accurate qualitative and quantitative analysis of radionuclides.