针对稀疏孔径条件下目标运动补偿难和方位稀疏成像算法效率低、分辨率差等问题,本文提出了一种稀疏孔径下的运动补偿和快速超分辨成像方法.首先,通过将运动补偿问题转换为距离频域内的多参数估计问题,基于黄金分割法实现参数的快速估计...针对稀疏孔径条件下目标运动补偿难和方位稀疏成像算法效率低、分辨率差等问题,本文提出了一种稀疏孔径下的运动补偿和快速超分辨成像方法.首先,通过将运动补偿问题转换为距离频域内的多参数估计问题,基于黄金分割法实现参数的快速估计后同时实现包络对齐和相位校正,从而完成运动补偿;其次,针对补偿后不同距离单元ISAR回波的特征,为实现快速的方位成像,本文提出矩阵形式的Nesterov线性Bregman迭代算法(Matrix form of Nesterov Linearized Bregman Iteration,MNLBI)算法,分析了该算法的基本迭代格式,讨论了加快收敛的原因,并详细分析了该算法的运算量,仿真与实测数据结果验证了本文方法的有效性.展开更多
文摘针对稀疏孔径条件下目标运动补偿难和方位稀疏成像算法效率低、分辨率差等问题,本文提出了一种稀疏孔径下的运动补偿和快速超分辨成像方法.首先,通过将运动补偿问题转换为距离频域内的多参数估计问题,基于黄金分割法实现参数的快速估计后同时实现包络对齐和相位校正,从而完成运动补偿;其次,针对补偿后不同距离单元ISAR回波的特征,为实现快速的方位成像,本文提出矩阵形式的Nesterov线性Bregman迭代算法(Matrix form of Nesterov Linearized Bregman Iteration,MNLBI)算法,分析了该算法的基本迭代格式,讨论了加快收敛的原因,并详细分析了该算法的运算量,仿真与实测数据结果验证了本文方法的有效性.