We investigate the following inverse problem:starting from the acoustic wave equation,reconstruct a piecewise constant passive acoustic source from a single boundary temporal measurement without knowing the speed of s...We investigate the following inverse problem:starting from the acoustic wave equation,reconstruct a piecewise constant passive acoustic source from a single boundary temporal measurement without knowing the speed of sound.When the amplitudes of the source are known a priori,we prove a unique determination result of the shape and propose a level set algorithm to reconstruct the singularities.When the singularities of the source are known a priori,we show unique determination of the source amplitudes and propose a least-squares fitting algorithm to recover the source amplitudes.The analysis bridges the low-frequency source inversion problem and the inverse problem of gravimetry.The proposed algorithms are validated and quantitatively evaluated with numerical experiments in 2D and 3D.展开更多
In the theory of cooperative transferable utilities games, (TU games), the Efficient Values, that is those which show how the win of the grand coalition is shared by the players, may not be a good solution to give a f...In the theory of cooperative transferable utilities games, (TU games), the Efficient Values, that is those which show how the win of the grand coalition is shared by the players, may not be a good solution to give a fair outcome to each player. In an earlier work of the author, the Inverse Problem has been stated and explicitely solved for the Shapley Value and for the Least Square Values. In the present paper, for a given vector, which is the Shapley Value of a game, but it is not coalitional rational, that is it does not belong to the Core of the game, we would like to find out a new game with the Shapley Value equal to the a priori given vector and for which this vector is also in the Core of the game. In other words, in the Inverse Set relative to the Shapley Value, we want to find out a new game, for which the Shapley Value is coalitional rational. The results show how such a game may be obtained, and some examples are illustrating the technique. Moreover, it is shown that beside the original game, there are always other games for which the given vector is not in the Core. The similar problem is solved for the Least Square Values.展开更多
The main goal of this paper is to study the sample path properties for the harmonisable-type N-parameter multifractional Brownian motion, whose local regularities change as time evolves. We provide the upper and lower...The main goal of this paper is to study the sample path properties for the harmonisable-type N-parameter multifractional Brownian motion, whose local regularities change as time evolves. We provide the upper and lower bounds on the hitting probabilities of an (N, d)-multifractional Brownian motion. Moreover, we determine the Hausdorff dimension of its inverse images, and the Hausdorff and packing dimensions of its level sets.展开更多
The matrix least squares (LS) problem minx ||AXB^T--T||F is trivial and its solution can be simply formulated in terms of the generalized inverse of A and B. Its generalized problem minx1,x2 ||A1X1B1^T + A2X2...The matrix least squares (LS) problem minx ||AXB^T--T||F is trivial and its solution can be simply formulated in terms of the generalized inverse of A and B. Its generalized problem minx1,x2 ||A1X1B1^T + A2X2B2^T - T||F can also be regarded as the constrained LS problem minx=diag(x1,x2) ||AXB^T -T||F with A = [A1, A2] and B = [B1, B2]. The authors transform T to T such that min x1,x2 ||A1X1B1^T+A2X2B2^T -T||F is equivalent to min x=diag(x1 ,x2) ||AXB^T - T||F whose solutions are included in the solution set of unconstrained problem minx ||AXB^T - T||F. So the general solutions of min x1,x2 ||A1X1B^T + A2X2B2^T -T||F are reconstructed by selecting the parameter matrix in that of minx ||AXB^T - T||F.展开更多
In earlier works we introduced the Inverse Problem, relative to the Shapley Value, then relative to Semivalues. In the explicit representation of the Inverse Set, the solution set of the Inverse Problem, we built a fa...In earlier works we introduced the Inverse Problem, relative to the Shapley Value, then relative to Semivalues. In the explicit representation of the Inverse Set, the solution set of the Inverse Problem, we built a family of games, called the almost null family, in which we determined more recently a game where the Shapley Value and the Egalitarian Allocations are colalitional rational. The Egalitarian Nonseparable Contribution is another value for cooperative transferable utilities games (TU games), showing how to allocate fairly the win of the grand coalition, in case that this has been formed. In the present paper, we solve the similar problem for this new value: given a nonnegative vector representing the Egalitarian Nonseparable Contribution of a TU game, find out a game in which the Egalitarian Nonseparable Contribution is kept the same, but it is colalitional rational. The new game will belong to the family of almost null games in the Inverse Set, relative to the Shapley Value, and it is proved that the threshold of coalitional rationality will be higher than the one for the Shapley Value. The needed previous results are shown in the introduction, the second section is devoted to the main results, while in the last section are discussed remarks and connected problems. Some numerical examples are illustrating the procedure of finding the new game.展开更多
This paper deals with the Bayesian estimation of Shannon entropy for the generalized inverse exponential distribution.Assuming that the observed samples are taken from the upper record ranked set sampling(URRSS)and up...This paper deals with the Bayesian estimation of Shannon entropy for the generalized inverse exponential distribution.Assuming that the observed samples are taken from the upper record ranked set sampling(URRSS)and upper record values(URV)schemes.Formulas of Bayesian estimators are derived depending on a gamma prior distribution considering the squared error,linear exponential and precautionary loss functions,in addition,we obtain Bayesian credible intervals.The random-walk Metropolis-Hastings algorithm is handled to generate Markov chain Monte Carlo samples from the posterior distribution.Then,the behavior of the estimates is examined at various record values.The output of the study shows that the entropy Bayesian estimates under URRSS are more convenient than the other estimates under URV in the majority of the situations.Also,the entropy Bayesian estimates perform well as the number of records increases.The obtained results validate the usefulness and efficiency of the URV method.Real data is analyzed for more clarifying purposes which validate the theoretical results.展开更多
The inverse problem analysis method provides an effective way for the structural parameter identification.However,uncertainties wildly exist in the practical engineering inverse problems.Due to the coupling of multi-s...The inverse problem analysis method provides an effective way for the structural parameter identification.However,uncertainties wildly exist in the practical engineering inverse problems.Due to the coupling of multi-source uncertainties in the measured responses and the modeling parameters,the traditional inverse method under the deterministic framework faces the challenges in solving mechanism and computing cost.In this paper,an uncertain inverse method based on convex model and dimension reduction decomposition is proposed to realize the interval identification of unknown structural parameters according to the uncertain measured responses and modeling parameters.Firstly,the polygonal convex set model is established to quantify the epistemic uncertainties of modeling parameters.Afterwards,a space collocation method based on dimension reduction decomposition is proposed to transform the inverse problem considering multi-source uncertainties into a few interval inverse problems considering response uncertainty.The transformed interval inverse problem involves the two-layer solving process including interval propagation and optimization updating.In order to solve the interval inverse problems considering response uncertainty,an efficient interval inverse method based on the high dimensional model representation and affine algorithm is further developed.Through the coupling of the above two strategies,the proposed uncertain inverse method avoids the time-consuming multi-layer nested calculation procedure,and then effectively realizes the uncertainty identification of unknown structural parameters.Finally,two engineering examples are provided to verify the effectiveness of the proposed uncertain inverse method.展开更多
The electric inversion technique reconstructs the subsurface medium distribution from acquired data.On the basis of electric inversion,objects buried under the earth or seabed,such as pipelines and unexploded ordnance...The electric inversion technique reconstructs the subsurface medium distribution from acquired data.On the basis of electric inversion,objects buried under the earth or seabed,such as pipelines and unexploded ordnance,are detected and located in a contactless manner.However,the process of accurately reconstructing the shape of the target object is challenging because electric inversion is a nonlinear and ill-posed problem.In this work,we present an inverse multiquadric(IMQ)regularization method based on the level set function for reconstructing buried pipelines.In the case of locating underwater objects,the unknown inversion area is split into two parts,the background and the pipeline with known conductivity.The geometry of the pipeline is represented based on the level set function for achieving a noiseless inversion image.To obtain a binary image,the IMQ is used as the regularization term,which‘pushes’the level set function away from 0.We also provide an appropriate method to select the bandwidth and regularization parameters for the IMQ regularization term,resulting in reconstructed images with sharp edges.The simulation results and analysis show that the proposed method performs better than classical inversion methods.展开更多
针对高温超导故障限流器(high temperature superconductor-fault current limiter,HTS-FCL)的全网优化配置问题,提出了一种基于免疫算法的高温超导故障限流器Pareto多目标优化配置新方法。该方法综合考虑了限流器的成本和限流效果这2...针对高温超导故障限流器(high temperature superconductor-fault current limiter,HTS-FCL)的全网优化配置问题,提出了一种基于免疫算法的高温超导故障限流器Pareto多目标优化配置新方法。该方法综合考虑了限流器的成本和限流效果这2个优化目标。首先介绍了HTS-FCL的基本结构和原理,分析了安装高温超导故障限流器对原系统自阻抗的影响,提出了一种基于短路电流变化率的灵敏度计算方法,该方法可以缩小搜索空间,提高算法效率。然后分别建立了限流器成本评价子函数、限流效果评价子函数和多目标评价函数,制定了基于免疫算法的多目标Pareto优化算法流程,并在传统免疫算法的基础上提出了一种改进型的等成本倒位算子,通过仿真验证表明该算子较常规的免疫算法,能更好地收敛到最优解。最后以IEEE 39标准节点系统为例,实现了HTS-FCL的全网优化配置,验证了新方法的有效性,并求得了在综合考虑限流器成本和限流效果下的Pareto最优解集,设计者可以根据自己的意愿和实际情况在所求得的Pareto最优解集中选择合适的最优方案。展开更多
As the air combat environment becomes more complicated and changeable, accurate threat assessment of air target has a significant impact on air defense operations. This paper proposes an improved generalized intuition...As the air combat environment becomes more complicated and changeable, accurate threat assessment of air target has a significant impact on air defense operations. This paper proposes an improved generalized intuitionistic fuzzy soft set (GIFSS) method for dynamic assessment of air target threat. Firstly, the threat assessment index is reasonably determined by analyzing the typical characteristics of air targets. Secondly, after the GIFSS at different time is obtained, the index weight is determined by the intuitionistic fuzzy set entropy and the relative entropy theory. Then, the inverse Poisson distribution method is used to determine the weight of time series, and then the time-weighted GIFSS is obtained. Finally, threat assessment of five air targets is carried out by using the improved GIFSS (I-GIFSS) and comparison methods. The validity and superiority of the proposed method are verified by calculation and comparison.展开更多
基金partially supported by the NSF(Grant Nos.2012046,2152011,and 2309534)partially supported by the NSF(Grant Nos.DMS-1715178,DMS-2006881,and DMS-2237534)+1 种基金NIH(Grant No.R03-EB033521)startup fund from Michigan State University.
文摘We investigate the following inverse problem:starting from the acoustic wave equation,reconstruct a piecewise constant passive acoustic source from a single boundary temporal measurement without knowing the speed of sound.When the amplitudes of the source are known a priori,we prove a unique determination result of the shape and propose a level set algorithm to reconstruct the singularities.When the singularities of the source are known a priori,we show unique determination of the source amplitudes and propose a least-squares fitting algorithm to recover the source amplitudes.The analysis bridges the low-frequency source inversion problem and the inverse problem of gravimetry.The proposed algorithms are validated and quantitatively evaluated with numerical experiments in 2D and 3D.
文摘In the theory of cooperative transferable utilities games, (TU games), the Efficient Values, that is those which show how the win of the grand coalition is shared by the players, may not be a good solution to give a fair outcome to each player. In an earlier work of the author, the Inverse Problem has been stated and explicitely solved for the Shapley Value and for the Least Square Values. In the present paper, for a given vector, which is the Shapley Value of a game, but it is not coalitional rational, that is it does not belong to the Core of the game, we would like to find out a new game with the Shapley Value equal to the a priori given vector and for which this vector is also in the Core of the game. In other words, in the Inverse Set relative to the Shapley Value, we want to find out a new game, for which the Shapley Value is coalitional rational. The results show how such a game may be obtained, and some examples are illustrating the technique. Moreover, it is shown that beside the original game, there are always other games for which the given vector is not in the Core. The similar problem is solved for the Least Square Values.
基金Supported by Zhejiang Provincial Natural Science Foundation of China (Grant No. Y6100663)
文摘The main goal of this paper is to study the sample path properties for the harmonisable-type N-parameter multifractional Brownian motion, whose local regularities change as time evolves. We provide the upper and lower bounds on the hitting probabilities of an (N, d)-multifractional Brownian motion. Moreover, we determine the Hausdorff dimension of its inverse images, and the Hausdorff and packing dimensions of its level sets.
基金supported in part by the Social Science Foundation of Ministry of Education(07JJD790154)the National Science Foundation for Young Scholars (60803076)+2 种基金the Natural Science Foundation of Zhejiang Province (Y6090211)Foundation of Education Department of Zhejiang Province (20070590)the Young Talent Foundation of Zhejiang Gongshang University
文摘The matrix least squares (LS) problem minx ||AXB^T--T||F is trivial and its solution can be simply formulated in terms of the generalized inverse of A and B. Its generalized problem minx1,x2 ||A1X1B1^T + A2X2B2^T - T||F can also be regarded as the constrained LS problem minx=diag(x1,x2) ||AXB^T -T||F with A = [A1, A2] and B = [B1, B2]. The authors transform T to T such that min x1,x2 ||A1X1B1^T+A2X2B2^T -T||F is equivalent to min x=diag(x1 ,x2) ||AXB^T - T||F whose solutions are included in the solution set of unconstrained problem minx ||AXB^T - T||F. So the general solutions of min x1,x2 ||A1X1B^T + A2X2B2^T -T||F are reconstructed by selecting the parameter matrix in that of minx ||AXB^T - T||F.
文摘In earlier works we introduced the Inverse Problem, relative to the Shapley Value, then relative to Semivalues. In the explicit representation of the Inverse Set, the solution set of the Inverse Problem, we built a family of games, called the almost null family, in which we determined more recently a game where the Shapley Value and the Egalitarian Allocations are colalitional rational. The Egalitarian Nonseparable Contribution is another value for cooperative transferable utilities games (TU games), showing how to allocate fairly the win of the grand coalition, in case that this has been formed. In the present paper, we solve the similar problem for this new value: given a nonnegative vector representing the Egalitarian Nonseparable Contribution of a TU game, find out a game in which the Egalitarian Nonseparable Contribution is kept the same, but it is colalitional rational. The new game will belong to the family of almost null games in the Inverse Set, relative to the Shapley Value, and it is proved that the threshold of coalitional rationality will be higher than the one for the Shapley Value. The needed previous results are shown in the introduction, the second section is devoted to the main results, while in the last section are discussed remarks and connected problems. Some numerical examples are illustrating the procedure of finding the new game.
基金A.R.A.Alanzi would like to thank the Deanship of Scientific Research at Majmaah University for financial support and encouragement.
文摘This paper deals with the Bayesian estimation of Shannon entropy for the generalized inverse exponential distribution.Assuming that the observed samples are taken from the upper record ranked set sampling(URRSS)and upper record values(URV)schemes.Formulas of Bayesian estimators are derived depending on a gamma prior distribution considering the squared error,linear exponential and precautionary loss functions,in addition,we obtain Bayesian credible intervals.The random-walk Metropolis-Hastings algorithm is handled to generate Markov chain Monte Carlo samples from the posterior distribution.Then,the behavior of the estimates is examined at various record values.The output of the study shows that the entropy Bayesian estimates under URRSS are more convenient than the other estimates under URV in the majority of the situations.Also,the entropy Bayesian estimates perform well as the number of records increases.The obtained results validate the usefulness and efficiency of the URV method.Real data is analyzed for more clarifying purposes which validate the theoretical results.
基金National Science Foundation of China(Grant No.51975199)the Changsha Municipal Natural Science Foundation(Grant No.kq2014050).
文摘The inverse problem analysis method provides an effective way for the structural parameter identification.However,uncertainties wildly exist in the practical engineering inverse problems.Due to the coupling of multi-source uncertainties in the measured responses and the modeling parameters,the traditional inverse method under the deterministic framework faces the challenges in solving mechanism and computing cost.In this paper,an uncertain inverse method based on convex model and dimension reduction decomposition is proposed to realize the interval identification of unknown structural parameters according to the uncertain measured responses and modeling parameters.Firstly,the polygonal convex set model is established to quantify the epistemic uncertainties of modeling parameters.Afterwards,a space collocation method based on dimension reduction decomposition is proposed to transform the inverse problem considering multi-source uncertainties into a few interval inverse problems considering response uncertainty.The transformed interval inverse problem involves the two-layer solving process including interval propagation and optimization updating.In order to solve the interval inverse problems considering response uncertainty,an efficient interval inverse method based on the high dimensional model representation and affine algorithm is further developed.Through the coupling of the above two strategies,the proposed uncertain inverse method avoids the time-consuming multi-layer nested calculation procedure,and then effectively realizes the uncertainty identification of unknown structural parameters.Finally,two engineering examples are provided to verify the effectiveness of the proposed uncertain inverse method.
基金supported by the National Natural Sci-ence Foundation of China(No.52101383)the Fundamen-tal Research Funds for the Central Universities(No.3072021CF0802)+3 种基金the Key Laboratory of Advanced Marine Communication and Information Technology,Ministry of Industry and Information Technology(No.AMCIT2101-02)the Sino-Russian Cooperation Fund of Harbin Engi-neering University(No.2021HEUCRF006)the Ministry of Science and Higher Education of the Russian Federation(No.075-15-2020-934)the International Science&Technology Cooperation Program of China(No.2014DF R10240).
文摘The electric inversion technique reconstructs the subsurface medium distribution from acquired data.On the basis of electric inversion,objects buried under the earth or seabed,such as pipelines and unexploded ordnance,are detected and located in a contactless manner.However,the process of accurately reconstructing the shape of the target object is challenging because electric inversion is a nonlinear and ill-posed problem.In this work,we present an inverse multiquadric(IMQ)regularization method based on the level set function for reconstructing buried pipelines.In the case of locating underwater objects,the unknown inversion area is split into two parts,the background and the pipeline with known conductivity.The geometry of the pipeline is represented based on the level set function for achieving a noiseless inversion image.To obtain a binary image,the IMQ is used as the regularization term,which‘pushes’the level set function away from 0.We also provide an appropriate method to select the bandwidth and regularization parameters for the IMQ regularization term,resulting in reconstructed images with sharp edges.The simulation results and analysis show that the proposed method performs better than classical inversion methods.
文摘针对高温超导故障限流器(high temperature superconductor-fault current limiter,HTS-FCL)的全网优化配置问题,提出了一种基于免疫算法的高温超导故障限流器Pareto多目标优化配置新方法。该方法综合考虑了限流器的成本和限流效果这2个优化目标。首先介绍了HTS-FCL的基本结构和原理,分析了安装高温超导故障限流器对原系统自阻抗的影响,提出了一种基于短路电流变化率的灵敏度计算方法,该方法可以缩小搜索空间,提高算法效率。然后分别建立了限流器成本评价子函数、限流效果评价子函数和多目标评价函数,制定了基于免疫算法的多目标Pareto优化算法流程,并在传统免疫算法的基础上提出了一种改进型的等成本倒位算子,通过仿真验证表明该算子较常规的免疫算法,能更好地收敛到最优解。最后以IEEE 39标准节点系统为例,实现了HTS-FCL的全网优化配置,验证了新方法的有效性,并求得了在综合考虑限流器成本和限流效果下的Pareto最优解集,设计者可以根据自己的意愿和实际情况在所求得的Pareto最优解集中选择合适的最优方案。
基金supported by the National Natural Science Foundation of China(51779263)
文摘As the air combat environment becomes more complicated and changeable, accurate threat assessment of air target has a significant impact on air defense operations. This paper proposes an improved generalized intuitionistic fuzzy soft set (GIFSS) method for dynamic assessment of air target threat. Firstly, the threat assessment index is reasonably determined by analyzing the typical characteristics of air targets. Secondly, after the GIFSS at different time is obtained, the index weight is determined by the intuitionistic fuzzy set entropy and the relative entropy theory. Then, the inverse Poisson distribution method is used to determine the weight of time series, and then the time-weighted GIFSS is obtained. Finally, threat assessment of five air targets is carried out by using the improved GIFSS (I-GIFSS) and comparison methods. The validity and superiority of the proposed method are verified by calculation and comparison.