An inverse method of characteristics was introduced into the design concept of using osculating cones (OC) in the supersonic flow, which can extend the domain of options for generating the aerospace vehicle configura...An inverse method of characteristics was introduced into the design concept of using osculating cones (OC) in the supersonic flow, which can extend the domain of options for generating the aerospace vehicle configurations with supersonic leading edge as well as inlet diffusers. Some more practical waverider shapes with higher volumetric efficiency can be obtained through using the concept of osculating axisymmetric (OA) flows with rotationality in the post shock flow field by inputting curved shocks.展开更多
Sonic boom reduction will be an issue of utmost importance in future supersonic trans-port, due to strong regulations on acoustic nuisance. The paper describes a new multi-objective optimization method for supersonic ...Sonic boom reduction will be an issue of utmost importance in future supersonic trans-port, due to strong regulations on acoustic nuisance. The paper describes a new multi-objective optimization method for supersonic aircraft design. The method is developed by coupling Seebass-George-Darden (SGD) inverse design method and multi-objective genetic algorithm. Based on the method, different codes are developed. Using a computational architecture, a concep-tual supersonic aircraft design environment (CSADE) is constructed. The architecture of CSADE includes inner optimization level and out optimization level. The low boom configuration is gener-ated in inner optimization level by matching the target equivalent area distribution and actual equivalent area distribution. And low boom/low drag configuration is generated in outer optimiza-tion level by using NSGA-II multi-objective genetic algorithm to optimize the control parameters of SGD method and aircraft shape. Two objective functions, low sonic boom and low wave drag, are considered in CSADE. Physically reasonable Pareto solutions are obtained from the present optimization. Some supersonic aircraft configurations are selected from Pareto front and the optimization results indicate that the swept forward wing configuration has benefits in both sonic boom reduction and wave drag reduction. The results are validated by using computational fluid dynamics (CFD) analysis.展开更多
文摘An inverse method of characteristics was introduced into the design concept of using osculating cones (OC) in the supersonic flow, which can extend the domain of options for generating the aerospace vehicle configurations with supersonic leading edge as well as inlet diffusers. Some more practical waverider shapes with higher volumetric efficiency can be obtained through using the concept of osculating axisymmetric (OA) flows with rotationality in the post shock flow field by inputting curved shocks.
基金supported by the Doctorate Foundation of Northwestern Polytechnical University (CX-201232)
文摘Sonic boom reduction will be an issue of utmost importance in future supersonic trans-port, due to strong regulations on acoustic nuisance. The paper describes a new multi-objective optimization method for supersonic aircraft design. The method is developed by coupling Seebass-George-Darden (SGD) inverse design method and multi-objective genetic algorithm. Based on the method, different codes are developed. Using a computational architecture, a concep-tual supersonic aircraft design environment (CSADE) is constructed. The architecture of CSADE includes inner optimization level and out optimization level. The low boom configuration is gener-ated in inner optimization level by matching the target equivalent area distribution and actual equivalent area distribution. And low boom/low drag configuration is generated in outer optimiza-tion level by using NSGA-II multi-objective genetic algorithm to optimize the control parameters of SGD method and aircraft shape. Two objective functions, low sonic boom and low wave drag, are considered in CSADE. Physically reasonable Pareto solutions are obtained from the present optimization. Some supersonic aircraft configurations are selected from Pareto front and the optimization results indicate that the swept forward wing configuration has benefits in both sonic boom reduction and wave drag reduction. The results are validated by using computational fluid dynamics (CFD) analysis.