Various resting-state fMRI(R-fMRI) measures have been developed to characterize intrinsic brain activity. While each of these measures has gained a growing presence in the literature, questions remain regarding the co...Various resting-state fMRI(R-fMRI) measures have been developed to characterize intrinsic brain activity. While each of these measures has gained a growing presence in the literature, questions remain regarding the common and unique aspects these indices capture. The present work provided a comprehensive examination of inter-individual variation and intra-individual temporal variation for commonly used measures, including fractional amplitude of low frequency fluctuations, regional homogeneity,voxel-mirrored homotopic connectivity, network centrality and global signal correlation. Regardless of whether examining intra-individual or inter-individual variation, we found that these definitionally distinct R-fMRI indices tend to exhibit a relatively high degree of covariation, which doesn't exist in phase randomized surrogate data. As a measure of intrinsic brain function, concordance for R-fMRI indices was negatively correlated with age across individuals(i.e., concordance among functional indices decreased with age). To understand the functional significance of concordance, we noted that higher concordance was generally associated with higher strengths of R-fMRI indices, regardless of whether looking through the lens of inter-individual(i.e., high vs. low concordance participants) or intra-individual(i.e., high vs.low concordance states identified via temporal dynamic analyses) differences. We also noted a linear increase in functional concordance together with the R-fMRI indices through the scan, which may suggest a decrease in arousal. The current study demonstrated an enriched picture regarding the relationship among the R-fMRI indices, as well as provided new insights in examining dynamic states within and between individuals.展开更多
A thinner cortex has higher potential for binding GABA receptor A which is associated with larger amplitudes of intrinsic brain activity(i BA). However, the relationship between cortical thickness and i BA is unknown ...A thinner cortex has higher potential for binding GABA receptor A which is associated with larger amplitudes of intrinsic brain activity(i BA). However, the relationship between cortical thickness and i BA is unknown in intact and epileptic brains. To this end, we investigated the relationship between cortical thickness measured by highresolution MRI and surface-based i BA derived from resting-state functional MRI in normal controls(n = 82) andpatients with generalized tonic–clonic seizures(GTCS)only(n = 82). We demonstrated that the spatial distribution of cortical thickness negatively correlated with surface-based i BA amplitude at both whole-brain and within independent brain functional networks. In GTCS patients,spatial coupling between thickness and i BA amplitude decreased in the default mode, dorsal attention, and somatomotor networks. In addition, the vertex-wise acrosssubject thickness–i BA amplitude correspondence altered in the frontal and temporal lobes as well as in the precuneus in GTCS patients. The relationship between these two modalities can serve as a brain-based marker for detecting epileptogenic changes.展开更多
Background Alexithymia is a multidimensional personality construct.Objective This study aims to investigate the neuronal correlates of each alexithymia dimension by examining the regional homogeneity (ReHo) of int...Background Alexithymia is a multidimensional personality construct.Objective This study aims to investigate the neuronal correlates of each alexithymia dimension by examining the regional homogeneity (ReHo) of intrinsic brain activity in a resting situation.Methods From university freshmen, students with alexithymia and non-alexithymia were recruited. Their alexithymic traits were assessed using the Toronto Alexithymia Scale-20. The ReHo was examined using a resting-state functional MRI approach.Results This study suggests signifcant group differences in ReHo in multiple brain regions distributed in the frontal lobe, parietal lobe, temporal lobe, occipital lobe and insular cortex. However, only the ReHo in the insula was positively associated with diffculty identifying feelings, a main dimension of alexithymia. The ReHo in the lingual gyrus, precentral gyrus and postcentral gyrus was?positively associated with diffculty describing feelings in?participants with?alexithymia. Lastly, the ReHo in the right dorsomedial prefrontal cortex (DMPFC_R) was negatively related to the externally oriented thinking style of participants with?alexithymia.Conclusion In conclusion, these results suggest that the main dimensions of alexithymia are correlated with specifc brain regions’ function, and the role of the insula, lingual gyrus, precentral gyrus, postcentral gyrus and DMPFC_R in the neuropathology of alexithymia should be further investigated.展开更多
基金supported by the National Key R&D Program of China (2017YFC1309902 to CGY)National Basic Research Program (2015CB351702 to XNZ)+4 种基金the Natural Science Foundation of China (81671774 and 81630031 to CGY, 81471740, 81220108014 to XNZ)the Hundred Talents Program of the Chinese Academy of Sciences (Y5CX072006 to CGY)Beijing Municipal Science & Technology Commission (Z161100000216152 to CGY)the National Institutes of Health (U01MH099059 to MPM)the Child Mind Institute (1FDN2012-1 to MPM)
文摘Various resting-state fMRI(R-fMRI) measures have been developed to characterize intrinsic brain activity. While each of these measures has gained a growing presence in the literature, questions remain regarding the common and unique aspects these indices capture. The present work provided a comprehensive examination of inter-individual variation and intra-individual temporal variation for commonly used measures, including fractional amplitude of low frequency fluctuations, regional homogeneity,voxel-mirrored homotopic connectivity, network centrality and global signal correlation. Regardless of whether examining intra-individual or inter-individual variation, we found that these definitionally distinct R-fMRI indices tend to exhibit a relatively high degree of covariation, which doesn't exist in phase randomized surrogate data. As a measure of intrinsic brain function, concordance for R-fMRI indices was negatively correlated with age across individuals(i.e., concordance among functional indices decreased with age). To understand the functional significance of concordance, we noted that higher concordance was generally associated with higher strengths of R-fMRI indices, regardless of whether looking through the lens of inter-individual(i.e., high vs. low concordance participants) or intra-individual(i.e., high vs.low concordance states identified via temporal dynamic analyses) differences. We also noted a linear increase in functional concordance together with the R-fMRI indices through the scan, which may suggest a decrease in arousal. The current study demonstrated an enriched picture regarding the relationship among the R-fMRI indices, as well as provided new insights in examining dynamic states within and between individuals.
基金supported by the National High Technology Research and Development Program of China(2015AA020505)the Natural Science Foundation of China(61533006,81201155,81301198,81471653,81401400,81271553,and 81422022)+1 种基金the Fundamental Research Funds for the Central Universities(ZYGX2013Z004)the China Postdoctoral Science Foundation(2013M532229)
文摘A thinner cortex has higher potential for binding GABA receptor A which is associated with larger amplitudes of intrinsic brain activity(i BA). However, the relationship between cortical thickness and i BA is unknown in intact and epileptic brains. To this end, we investigated the relationship between cortical thickness measured by highresolution MRI and surface-based i BA derived from resting-state functional MRI in normal controls(n = 82) andpatients with generalized tonic–clonic seizures(GTCS)only(n = 82). We demonstrated that the spatial distribution of cortical thickness negatively correlated with surface-based i BA amplitude at both whole-brain and within independent brain functional networks. In GTCS patients,spatial coupling between thickness and i BA amplitude decreased in the default mode, dorsal attention, and somatomotor networks. In addition, the vertex-wise acrosssubject thickness–i BA amplitude correspondence altered in the frontal and temporal lobes as well as in the precuneus in GTCS patients. The relationship between these two modalities can serve as a brain-based marker for detecting epileptogenic changes.
基金supported by the Natural Science Foundation of Zhejiang Province(no Q14H090014)
文摘Background Alexithymia is a multidimensional personality construct.Objective This study aims to investigate the neuronal correlates of each alexithymia dimension by examining the regional homogeneity (ReHo) of intrinsic brain activity in a resting situation.Methods From university freshmen, students with alexithymia and non-alexithymia were recruited. Their alexithymic traits were assessed using the Toronto Alexithymia Scale-20. The ReHo was examined using a resting-state functional MRI approach.Results This study suggests signifcant group differences in ReHo in multiple brain regions distributed in the frontal lobe, parietal lobe, temporal lobe, occipital lobe and insular cortex. However, only the ReHo in the insula was positively associated with diffculty identifying feelings, a main dimension of alexithymia. The ReHo in the lingual gyrus, precentral gyrus and postcentral gyrus was?positively associated with diffculty describing feelings in?participants with?alexithymia. Lastly, the ReHo in the right dorsomedial prefrontal cortex (DMPFC_R) was negatively related to the externally oriented thinking style of participants with?alexithymia.Conclusion In conclusion, these results suggest that the main dimensions of alexithymia are correlated with specifc brain regions’ function, and the role of the insula, lingual gyrus, precentral gyrus, postcentral gyrus and DMPFC_R in the neuropathology of alexithymia should be further investigated.