This study aimed to investigate the effects of dietary supplementation of yeast 13-glucan on the nutrient digestibility and serum profiles in pre-ruminant Holstein calves. Forty-two neonatal Holstein calves ((39.6+...This study aimed to investigate the effects of dietary supplementation of yeast 13-glucan on the nutrient digestibility and serum profiles in pre-ruminant Holstein calves. Forty-two neonatal Holstein calves ((39.6+4.2) kg) were randomly allotted to six groups, and each was offered one of the following diets: a basal diet (control) or the basal diet supplemented with 25, 50, 75, 100 or 200 mg of yeast 13-glucan kg-~ feed (dry matter basis). The basal diet consisted of a milk replacer and a starter feed. The trial lasted for 56 d. Two digestibility trials were conducted from d 14 to 20 and from d 42 to 48. Blood samples were collected on d 0, 14, 28 and 42 for serum profile analyses. On d 56, three calves from each group were slaughtered, and intestinal samples were collected to assess the villous height, crypt depth and mucosal thickness. Although feed intake was not affected by dietary treatment (P〉0.05), the average daily gain (ADG) and gain-to-feed ratios were higher (P〈0.05) for the calves fed 75 mg of yeast β-glucan kg^-1 feed than those in the other groups. The supplementation of yeast β-glucan at 75 mg kg^-1 feed increased the apparent digestibility of dry matter (DM), crude protein (CP), ether extract (EE), and phosphorus (P) (P〈0.05) and the ratio of intestinal villous height to crypt depth (V/C) (P〈0.05) when compared with the control group. No effects of yeast β-glucan on the serum concentrations of total protein (TP), albumin (ALB), serum urea nitrogen (SUN) and glucose (GLU) were observed (P〉0.05). Compared with the control group, supplementation of yeast β-glucan decreased (P〈0.05) the serum concentrations of triglycerides (TG) and total cholesterol (TC). The serum concentration of immunoglobulin G (IgG) and immunoglobulin M (IgM) increased quadratically (P〈0.05), whereas the serum concentration of immunoglobulin A (IgA) was unaffected by dietary treatments (P〉0.05). The展开更多
The present study was conducted to determine effects of different forms of yeast (Saccharomyces cerevisiae, strain Y200007) on the growth performance, intestinal development, and systemic immunity in early-weaned pi...The present study was conducted to determine effects of different forms of yeast (Saccharomyces cerevisiae, strain Y200007) on the growth performance, intestinal development, and systemic immunity in early-weaned piglets. A total of 96 piglets (14-d old, initial average body weight of 4.5 kg) were assigned to 4 dietary treatments: (1) basa diet without yeast (Control); (2) basal diet supplemented with 3.00 g/kg live yeast (LY); (3) basal diet supplemented with 2.66 g/kg heat-killed whole yeast (HKY); and (4) basal diet supplemented with 3.00 g/kg superfine yeast powders (SFY). Diets and water were provided ad libitum to the piglets during 3-week experiment. Growth performance of piglets was measured weekly. Samples of blood and small intestine were collected at days 7 and 21 of experiment. Dietary supplementation with LY and SFY improved G:F of piglets at days ]-21 of the experiment (P 〈 0.05) compared to Control group. Serum concentrations of growth hormone (GH), triiodothyronine (T3), tetraiodothyronine (T4), and insulin growth factor 1 (iGF-1) in piglets at day 21 of the experiment were higher when fed diets supplemented with LY and SFY than those in Control group (P 〈 0.05). Compared to Control group, contents of serum urea nitrogen of piglets were reduced by the 3 yeast-supplemented diets (P 〈 0.05). Diets supplemented with LY increased villus height and villus-to-crypt ratio in duodenum and jejunum of piglets (P 〈 0.05) compared to other two groups at day 7 of the experiment. Feeding diets supplemented with LY and SFY increased (P 〈 0.05) serum concentrations of IgA, IL-2, and IL-6 levels in piglets compared to Control. The CD4+/CD8+ ratio and proliferation of T-lymphocytes in piglets fed diets supplemented with LY were increased compared to that of Control group at day 7 of the experiment (P 〈 0.05). In conclusion, dietary supplementation with both LY and SFY enhanced feed conversion, small intestinal develo展开更多
基金supported by the Earmarked Fund for Beijing Dairy Industry Innovation Teamthe Beijing Key Technology for Early Weaning of Calvesthe National Key Technology R&D Program of China (2012BAD12B06)
文摘This study aimed to investigate the effects of dietary supplementation of yeast 13-glucan on the nutrient digestibility and serum profiles in pre-ruminant Holstein calves. Forty-two neonatal Holstein calves ((39.6+4.2) kg) were randomly allotted to six groups, and each was offered one of the following diets: a basal diet (control) or the basal diet supplemented with 25, 50, 75, 100 or 200 mg of yeast 13-glucan kg-~ feed (dry matter basis). The basal diet consisted of a milk replacer and a starter feed. The trial lasted for 56 d. Two digestibility trials were conducted from d 14 to 20 and from d 42 to 48. Blood samples were collected on d 0, 14, 28 and 42 for serum profile analyses. On d 56, three calves from each group were slaughtered, and intestinal samples were collected to assess the villous height, crypt depth and mucosal thickness. Although feed intake was not affected by dietary treatment (P〉0.05), the average daily gain (ADG) and gain-to-feed ratios were higher (P〈0.05) for the calves fed 75 mg of yeast β-glucan kg^-1 feed than those in the other groups. The supplementation of yeast β-glucan at 75 mg kg^-1 feed increased the apparent digestibility of dry matter (DM), crude protein (CP), ether extract (EE), and phosphorus (P) (P〈0.05) and the ratio of intestinal villous height to crypt depth (V/C) (P〈0.05) when compared with the control group. No effects of yeast β-glucan on the serum concentrations of total protein (TP), albumin (ALB), serum urea nitrogen (SUN) and glucose (GLU) were observed (P〉0.05). Compared with the control group, supplementation of yeast β-glucan decreased (P〈0.05) the serum concentrations of triglycerides (TG) and total cholesterol (TC). The serum concentration of immunoglobulin G (IgG) and immunoglobulin M (IgM) increased quadratically (P〈0.05), whereas the serum concentration of immunoglobulin A (IgA) was unaffected by dietary treatments (P〉0.05). The
基金financially supported by grants from China Agriculture Research System(CARS-36)the Special Fund for Agro-scientific Research in the Public Interest(No.201403047)+1 种基金National Basic Research Program of China(2013CB127301 and 2013CB127304)Presidential Foundation of Guangdong Academy of Agricultural Sciences(201312)
文摘The present study was conducted to determine effects of different forms of yeast (Saccharomyces cerevisiae, strain Y200007) on the growth performance, intestinal development, and systemic immunity in early-weaned piglets. A total of 96 piglets (14-d old, initial average body weight of 4.5 kg) were assigned to 4 dietary treatments: (1) basa diet without yeast (Control); (2) basal diet supplemented with 3.00 g/kg live yeast (LY); (3) basal diet supplemented with 2.66 g/kg heat-killed whole yeast (HKY); and (4) basal diet supplemented with 3.00 g/kg superfine yeast powders (SFY). Diets and water were provided ad libitum to the piglets during 3-week experiment. Growth performance of piglets was measured weekly. Samples of blood and small intestine were collected at days 7 and 21 of experiment. Dietary supplementation with LY and SFY improved G:F of piglets at days ]-21 of the experiment (P 〈 0.05) compared to Control group. Serum concentrations of growth hormone (GH), triiodothyronine (T3), tetraiodothyronine (T4), and insulin growth factor 1 (iGF-1) in piglets at day 21 of the experiment were higher when fed diets supplemented with LY and SFY than those in Control group (P 〈 0.05). Compared to Control group, contents of serum urea nitrogen of piglets were reduced by the 3 yeast-supplemented diets (P 〈 0.05). Diets supplemented with LY increased villus height and villus-to-crypt ratio in duodenum and jejunum of piglets (P 〈 0.05) compared to other two groups at day 7 of the experiment. Feeding diets supplemented with LY and SFY increased (P 〈 0.05) serum concentrations of IgA, IL-2, and IL-6 levels in piglets compared to Control. The CD4+/CD8+ ratio and proliferation of T-lymphocytes in piglets fed diets supplemented with LY were increased compared to that of Control group at day 7 of the experiment (P 〈 0.05). In conclusion, dietary supplementation with both LY and SFY enhanced feed conversion, small intestinal develo