Similar to hydraulic fracturing(HF), the coalescence and fracture of cracks are induced within a rock under the action of an ultrasonic field, known as ultrasonic fracturing(UF). Investigating UF is important in both ...Similar to hydraulic fracturing(HF), the coalescence and fracture of cracks are induced within a rock under the action of an ultrasonic field, known as ultrasonic fracturing(UF). Investigating UF is important in both hard rock drilling and oil and gas recovery. A three-dimensional internal laser-engraved crack(3D-ILC) method was introduced to prefabricate two parallel internal cracks within the samples without any damage to the surface. The samples were subjected to UF. The mechanism of UF was elucidated by analyzing the characteristics of fracture surfaces. The crack propagation path under different ultrasonic parameters was obtained by numerical simulation based on the Paris fatigue model and compared to the experimental results of UF. The results show that the 3D-ILC method is a powerful tool for UF research.Under the action of an ultrasonic field, the fracture surface shows the characteristics of beach marks and contains powder locally, indicating that the UF mechanism includes high-cycle fatigue fracture, shear and friction, and temperature load. The two internal cracks become close under UF. The numerical result obtained by the Paris fatigue model also shows the attraction of the two cracks, consistent with the test results. The 3D-ILC method provides a new tool for the experimental study of UF. Compared to the conventional numerical methods based on the analysis of stress-strain and plastic zone, numerical simulation can be a good alternative method to obtain the crack path under UF.展开更多
Center segregation is the main reason for cup fracture of high-carbon wire rod during drawing. Therefore, to continuously produce cast billets with very low center segregation is an important objective. The soft reduc...Center segregation is the main reason for cup fracture of high-carbon wire rod during drawing. Therefore, to continuously produce cast billets with very low center segregation is an important objective. The soft reduction technology is considered to be an effective method to minimize center segregation. To elucidate the effect of soft reduction on the internal quality of high-carbon steel billets, soft reduction was applied with different solid fractions in the core area of billets in a laboratory casting machine. A coupled temperature/displacement finite element model was developed to calculate the solid fraction using the commercial software ABAQUS. Center segregation, center porosity, homogeneity of elements, and equiaxed crystal zone were obviously improved by applying soft reduction, especially when the solid fraction was less than 1.0. The optimal results were obtained when the solid fraction was approximately 0.9.展开更多
A simultaneous experimental and numerical study on crack propagation in the pre-cracked beams specimens(concrete-like materials) is carried out using three-point bending flexural test. The crack propagation and coales...A simultaneous experimental and numerical study on crack propagation in the pre-cracked beams specimens(concrete-like materials) is carried out using three-point bending flexural test. The crack propagation and coalescence paths of internal cracks in side beam specimens are experimentally studied by inserting double internal cracks. The effects of crack positions on the fracturing path in the bridge areas of the double cracked beam specimens are also studied. It has been observed that the breaking of concrete-like cracked beams specimens occurs mainly by the propagation of wing cracks emanating from the tips of the pre-existing cracks in the numerical and experimental analyses, respectively. The same specimens are numerically simulated by an indirect boundary element method(IBEM) known as displacement discontinuity method(DDM) using higher displacement discontinuity. These numerical results are compared with the existing experimental results. This comparison illustrates the higher accuracy of the results obtained by the indirect boundary element method by using only a small number of elements compared with the discrete element method(PFC2D code).展开更多
Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe seve...Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe severely affects its pressure-holding capacity,hence the early detection of internal cracks is crucial for effective pipeline maintenance strategies.This study extends the scope of guided wave-based ultrasonic testing to detect the growth of internal cracks in a natural gas distribution PE pipe.Laboratory experiments and a finite element model were planned to study the wave-crack interaction at different stages of axially oriented internal crack growth with a piezoceramic transducer-based setup arranged in a pitch-catch configuration.Mode dispersion analysis supplemented with preliminary experiments was performed to isolate the optimal inspection frequency,leading to the selection of the T(0,1)mode at 50-kHz for the investigation.A transmission index based on the energy of the T(0,1)mode was developed to trace the extent of simulated crack growth.The findings revealed an inverse linear correlation between the transmission index and the crack depth for crack growth beyond 20%crack depth.展开更多
To investigate the formation of internal cracks in GCrl 5 bearing steels during the soft reduction process in rectangular bloom con- tinuous casting, fully coupled thermomechanieal finite element models were developed...To investigate the formation of internal cracks in GCrl 5 bearing steels during the soft reduction process in rectangular bloom con- tinuous casting, fully coupled thermomechanieal finite element models were developed using the commercial software MSC.MARC, and microstructures and fractographs were also observed. With the finite element models, the contours of temperature, equivalent plastic strain, and equivalent vun Mises stress were simulated. It is observed that the fracture surfaces of internal cracks are covered by cleavage or quasi-cleavage facets. The region of internal cracks in the intergranular brittle fracture mode is in the mushy zone between the zero ductility temperature (ZDT) and the zero strength temperature (ZST). The simulated equivalent plastic strain in the crack region is 2.34%-2.45%, which is larger than the critical strain (0.4%-1.5%), and the equivalent von Mises stress is 1.84-5.05 MPa, which is within the range of criti- cal stress (3.9-7.2 MPa), thus resulting in the occurrence of internal cracks. Reducing the soft reduction amount from 3 to 2 mm can lower the stress under the critical value.展开更多
To investigate the formation of internal cracks in steel billets during soft reduction, fully coupled thermo-mechanical finite element models were developed using the commercial software ABAQUS, also casting and soft ...To investigate the formation of internal cracks in steel billets during soft reduction, fully coupled thermo-mechanical finite element models were developed using the commercial software ABAQUS, also casting and soft reduction tests were carried out in a laboratory strand casting machine. With the finite element models, the temperature distribution, the stress and strain states in the billet were calculated. The relation between internal cracks and equivalent plastic strain, as well as maximal principal stress was analyzed. The results indicate that tensile stresses can develop in the mushy zone during soft reduction and the equivalent strain nearby the zero ductility temperature (ZDT) increases with decreasing solid fraction. Internal cracks can be initiated when the accumulated strain exceeds the critical strain or the applied tensile stress exceeds the critical fracture stress during solidification.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos. 52104125, U1765204 and 51739008)
文摘Similar to hydraulic fracturing(HF), the coalescence and fracture of cracks are induced within a rock under the action of an ultrasonic field, known as ultrasonic fracturing(UF). Investigating UF is important in both hard rock drilling and oil and gas recovery. A three-dimensional internal laser-engraved crack(3D-ILC) method was introduced to prefabricate two parallel internal cracks within the samples without any damage to the surface. The samples were subjected to UF. The mechanism of UF was elucidated by analyzing the characteristics of fracture surfaces. The crack propagation path under different ultrasonic parameters was obtained by numerical simulation based on the Paris fatigue model and compared to the experimental results of UF. The results show that the 3D-ILC method is a powerful tool for UF research.Under the action of an ultrasonic field, the fracture surface shows the characteristics of beach marks and contains powder locally, indicating that the UF mechanism includes high-cycle fatigue fracture, shear and friction, and temperature load. The two internal cracks become close under UF. The numerical result obtained by the Paris fatigue model also shows the attraction of the two cracks, consistent with the test results. The 3D-ILC method provides a new tool for the experimental study of UF. Compared to the conventional numerical methods based on the analysis of stress-strain and plastic zone, numerical simulation can be a good alternative method to obtain the crack path under UF.
文摘Center segregation is the main reason for cup fracture of high-carbon wire rod during drawing. Therefore, to continuously produce cast billets with very low center segregation is an important objective. The soft reduction technology is considered to be an effective method to minimize center segregation. To elucidate the effect of soft reduction on the internal quality of high-carbon steel billets, soft reduction was applied with different solid fractions in the core area of billets in a laboratory casting machine. A coupled temperature/displacement finite element model was developed to calculate the solid fraction using the commercial software ABAQUS. Center segregation, center porosity, homogeneity of elements, and equiaxed crystal zone were obviously improved by applying soft reduction, especially when the solid fraction was less than 1.0. The optimal results were obtained when the solid fraction was approximately 0.9.
文摘A simultaneous experimental and numerical study on crack propagation in the pre-cracked beams specimens(concrete-like materials) is carried out using three-point bending flexural test. The crack propagation and coalescence paths of internal cracks in side beam specimens are experimentally studied by inserting double internal cracks. The effects of crack positions on the fracturing path in the bridge areas of the double cracked beam specimens are also studied. It has been observed that the breaking of concrete-like cracked beams specimens occurs mainly by the propagation of wing cracks emanating from the tips of the pre-existing cracks in the numerical and experimental analyses, respectively. The same specimens are numerically simulated by an indirect boundary element method(IBEM) known as displacement discontinuity method(DDM) using higher displacement discontinuity. These numerical results are compared with the existing experimental results. This comparison illustrates the higher accuracy of the results obtained by the indirect boundary element method by using only a small number of elements compared with the discrete element method(PFC2D code).
基金the financial support provided by USDOT Pipeline and Hazardous Materials Safety Administration (PHMSA)through the Competitive Academic Agreement Program (CAAP)。
文摘Despite the success of guided wave ultrasonic inspection for internal defect detection in steel pipes,its application on polyethylene(PE)pipe remains relatively unexplored.The growth of internal cracks in PE pipe severely affects its pressure-holding capacity,hence the early detection of internal cracks is crucial for effective pipeline maintenance strategies.This study extends the scope of guided wave-based ultrasonic testing to detect the growth of internal cracks in a natural gas distribution PE pipe.Laboratory experiments and a finite element model were planned to study the wave-crack interaction at different stages of axially oriented internal crack growth with a piezoceramic transducer-based setup arranged in a pitch-catch configuration.Mode dispersion analysis supplemented with preliminary experiments was performed to isolate the optimal inspection frequency,leading to the selection of the T(0,1)mode at 50-kHz for the investigation.A transmission index based on the energy of the T(0,1)mode was developed to trace the extent of simulated crack growth.The findings revealed an inverse linear correlation between the transmission index and the crack depth for crack growth beyond 20%crack depth.
基金financially supported by the Key Science and Technology Program of Liaoning Province, China (No.2007414003)
文摘To investigate the formation of internal cracks in GCrl 5 bearing steels during the soft reduction process in rectangular bloom con- tinuous casting, fully coupled thermomechanieal finite element models were developed using the commercial software MSC.MARC, and microstructures and fractographs were also observed. With the finite element models, the contours of temperature, equivalent plastic strain, and equivalent vun Mises stress were simulated. It is observed that the fracture surfaces of internal cracks are covered by cleavage or quasi-cleavage facets. The region of internal cracks in the intergranular brittle fracture mode is in the mushy zone between the zero ductility temperature (ZDT) and the zero strength temperature (ZST). The simulated equivalent plastic strain in the crack region is 2.34%-2.45%, which is larger than the critical strain (0.4%-1.5%), and the equivalent von Mises stress is 1.84-5.05 MPa, which is within the range of criti- cal stress (3.9-7.2 MPa), thus resulting in the occurrence of internal cracks. Reducing the soft reduction amount from 3 to 2 mm can lower the stress under the critical value.
基金This work was financially supported by the Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Centre (SFB) 289.
文摘To investigate the formation of internal cracks in steel billets during soft reduction, fully coupled thermo-mechanical finite element models were developed using the commercial software ABAQUS, also casting and soft reduction tests were carried out in a laboratory strand casting machine. With the finite element models, the temperature distribution, the stress and strain states in the billet were calculated. The relation between internal cracks and equivalent plastic strain, as well as maximal principal stress was analyzed. The results indicate that tensile stresses can develop in the mushy zone during soft reduction and the equivalent strain nearby the zero ductility temperature (ZDT) increases with decreasing solid fraction. Internal cracks can be initiated when the accumulated strain exceeds the critical strain or the applied tensile stress exceeds the critical fracture stress during solidification.