It is still a challenge to simultaneously enhance coercivity(H_(cj))and remanence(J_(r))of hot-deformed Nd-Fe-B magnet due to the coercivity-remanence trade-off dilemma.Here,we achieved this balance between H_(cj)and ...It is still a challenge to simultaneously enhance coercivity(H_(cj))and remanence(J_(r))of hot-deformed Nd-Fe-B magnet due to the coercivity-remanence trade-off dilemma.Here,we achieved this balance between H_(cj)and Jr by flake Cu powder assisted DyF_(3)interflake addition.The Hcj increases from 1218 to 1496 kA/m and Jr increases from 1.32 to 1.34 T compared with the original magnet.Results show that the width of coarse grain layers reduces because of the introduction of flake Cu,which increases the contact areas of the adjacent grains at ribbon interfaces and suppresses the excessive growth of grains.The stronger degree of texture and higher density compared with the original magnet should take the responsibility for the increase of J_(r).Additionally,the aggregation regions of rare earth rich(RE-rich)phase reduce and the betterment of the microstructure is another reason for the enhancement of Jr in the flake Cu aided DyF_(3)hot-deformed magnet.This strategy of using flake powder additives provides a promising method for optimizing microstructure and enhancing magnetic properties of hot-deformed Nd-Fe-B magnets.展开更多
基金Project supported by the National Key Research and Development Program of China(2022YFB3505201,2022YFB3505400)the National Natural Science Foundation of China(52261034)the Natural Science Foundation of Jiangxi Province(20224BAB204015)。
文摘It is still a challenge to simultaneously enhance coercivity(H_(cj))and remanence(J_(r))of hot-deformed Nd-Fe-B magnet due to the coercivity-remanence trade-off dilemma.Here,we achieved this balance between H_(cj)and Jr by flake Cu powder assisted DyF_(3)interflake addition.The Hcj increases from 1218 to 1496 kA/m and Jr increases from 1.32 to 1.34 T compared with the original magnet.Results show that the width of coarse grain layers reduces because of the introduction of flake Cu,which increases the contact areas of the adjacent grains at ribbon interfaces and suppresses the excessive growth of grains.The stronger degree of texture and higher density compared with the original magnet should take the responsibility for the increase of J_(r).Additionally,the aggregation regions of rare earth rich(RE-rich)phase reduce and the betterment of the microstructure is another reason for the enhancement of Jr in the flake Cu aided DyF_(3)hot-deformed magnet.This strategy of using flake powder additives provides a promising method for optimizing microstructure and enhancing magnetic properties of hot-deformed Nd-Fe-B magnets.