Lithium(Li)metal is considered as one of the most promising anode materials for next-generation high-energy-density storage systems.However,the practical application of Li metal anode is hindered by interfacial instab...Lithium(Li)metal is considered as one of the most promising anode materials for next-generation high-energy-density storage systems.However,the practical application of Li metal anode is hindered by interfacial instability and air instability due to the highly reactivity of Li metal.Unstable interface in Li metal batteries(LMBs)directly dictates Li dendrite growth,“dead Li”and low Coulombic efficiency,resulting in inferior electrochemical performance of LMBs and even safety issues.In addition,its sensitivity to ambient air leads to the severe corrosion of Li metal anode,high requirements of production and storage,and increased manufacturing cost.Plenty of efforts in recent years have overcome many bottlenecks in these fields and hastened the practical applications of high-energy-density LMBs.In this review,we focus on emerging methods of these two aspects to fulfill a stable and low cost electrode.In this perspective,design artificial solid electrolyte interphase(SEI)layers,construct three-dimensional conductive current collectors,optimize electrolytes,employ solid-state electrolytes,and modify separators are summarized to be propitious to ameliorate interfacial stability.Meanwhile,ex situ/in situ formed protective layers are highlighted in favor of heightening air stability.Finally,several possible directions for the future research on advanced Li metal anode are addressed.展开更多
The influences of an anionic-nonionic composite surfactant and petroleum sulfonate, used in surfactant-polymer flooding in Shengli Gudong oilfield, East China, on the interfacial properties of Gudong crude model oil a...The influences of an anionic-nonionic composite surfactant and petroleum sulfonate, used in surfactant-polymer flooding in Shengli Gudong oilfield, East China, on the interfacial properties of Gudong crude model oil and synthetic formation water was studied by measuring interfacial tension, interfacial viscoelasticity and Zeta potential. The in? uence of the surfactants on the stability of Gudong water-in-oil (W/O) and oil-in-water (O/W) emulsions was evaluated by separating water from the W/O emulsion and residual oil in the aqueous phase of the O/W emulsion respectively. The results showed that the two kinds of surfactants, namely anionic-nonionic composite surfactant and petroleum sulfonate, are both able to decrease the interfacial tension between the oil phase and the aqueous phase and increase the surface potential of the oil droplets dispersed in the O/W emulsion, which can enhance the stability of the W/O and O/W crude oil emulsions. Compared with petroleum sulfonate, the anionic-nonionic composite surfactant is more interfacially active and able to enhance the strength of the interfacial film between oil and water, hence enhance the stability of the W/O and O/W emulsions more effectively.展开更多
基金National Natural Science Foundation of China(51772272)Natural Science Funds for Distinguished Young Scholar of Zhejiang Province(LR20E020001)+2 种基金China Postdoctoral Science Foundation(2020M671785 and 2020T130597)Natural Science Foundation of Zhejiang Province(LY18E020009,LY21E020005,and 2020C01130)the Foundation of State Key Laboratory of Coal Conversion(J20-21-909).
文摘Lithium(Li)metal is considered as one of the most promising anode materials for next-generation high-energy-density storage systems.However,the practical application of Li metal anode is hindered by interfacial instability and air instability due to the highly reactivity of Li metal.Unstable interface in Li metal batteries(LMBs)directly dictates Li dendrite growth,“dead Li”and low Coulombic efficiency,resulting in inferior electrochemical performance of LMBs and even safety issues.In addition,its sensitivity to ambient air leads to the severe corrosion of Li metal anode,high requirements of production and storage,and increased manufacturing cost.Plenty of efforts in recent years have overcome many bottlenecks in these fields and hastened the practical applications of high-energy-density LMBs.In this review,we focus on emerging methods of these two aspects to fulfill a stable and low cost electrode.In this perspective,design artificial solid electrolyte interphase(SEI)layers,construct three-dimensional conductive current collectors,optimize electrolytes,employ solid-state electrolytes,and modify separators are summarized to be propitious to ameliorate interfacial stability.Meanwhile,ex situ/in situ formed protective layers are highlighted in favor of heightening air stability.Finally,several possible directions for the future research on advanced Li metal anode are addressed.
基金supported by the National Key Scientific and Technological Projects (2008ZX05011)
文摘The influences of an anionic-nonionic composite surfactant and petroleum sulfonate, used in surfactant-polymer flooding in Shengli Gudong oilfield, East China, on the interfacial properties of Gudong crude model oil and synthetic formation water was studied by measuring interfacial tension, interfacial viscoelasticity and Zeta potential. The in? uence of the surfactants on the stability of Gudong water-in-oil (W/O) and oil-in-water (O/W) emulsions was evaluated by separating water from the W/O emulsion and residual oil in the aqueous phase of the O/W emulsion respectively. The results showed that the two kinds of surfactants, namely anionic-nonionic composite surfactant and petroleum sulfonate, are both able to decrease the interfacial tension between the oil phase and the aqueous phase and increase the surface potential of the oil droplets dispersed in the O/W emulsion, which can enhance the stability of the W/O and O/W crude oil emulsions. Compared with petroleum sulfonate, the anionic-nonionic composite surfactant is more interfacially active and able to enhance the strength of the interfacial film between oil and water, hence enhance the stability of the W/O and O/W emulsions more effectively.