Interfacial interactions involving Van der Waals force, hydrophobic attractive force and hydration exclusive force were investigated in this paper. The interfacial interactive free energy of a series of interfaces occ...Interfacial interactions involving Van der Waals force, hydrophobic attractive force and hydration exclusive force were investigated in this paper. The interfacial interactive free energy of a series of interfaces occurring between minerals, water, collectors and bubble was calculated. The results show that a Van der Waals attractive force and a hydrophobic attractive force exist between each mineral and water interface. The hydrophobic attractive force between molybdenite and water is markedly weaker than the hydrophobic attractive force between gangue and water. The hydrophobic attractive force between collector molecules and water is the main driving force that causes the collectors to become dispersed in the pulp. The strong hydrophobic attractive force between molybdenite and the bubble interface is the basic reason for the natural floatability of molybdenite. The Van der Waals force between molybdenite and the collectors is attractive in water solution, but it is not the cause of the main force between them. The main force that results in the collection effect is a hydrophobic attractive force caused by the Lewis acid-base interaction at the molybdenite surface. A floatation experiment shows that the adsorption intensity of the collector on the molybdenite surface is not the crucial factor for molybdenite floatation. Rather, the dispersing capability of the collector in the water phase and its selectivity for the various minerals in the floatation system are more important.展开更多
Photon upconversion has received substantial attention owing to its great promise in broad applications from bioimaging to other frontier fields like display,upconversion laser,information security and anticounterfeit...Photon upconversion has received substantial attention owing to its great promise in broad applications from bioimaging to other frontier fields like display,upconversion laser,information security and anticounterfeiting.A smart control and manipulation of the upconversion luminescence has always been a key topic,however,to date the most efficient mechanism for upconversion nanoparticles remains the energy transfer upconversion and recently reported energy migration mediated upconversion.Recently,we found that the interfacial energy transfer(IET)is also an efficient approach for enabling and tuning photon upconversion of lanthanide ions.Moreover,it can be used for the mechanistic understanding of the interionic interactions such as energy transfer and energy migration on the nanoscale.In this review,the recent advances of the research on the IET are summarized,the principles for designing IET process and typical examples are discussed together with its applications in both mechanistic research and frontier information security.The challenges and perspectives for future research are also commented.展开更多
Polyurea microcapsules about 2.5 μm in diameter containing phase change material for thermal energy storage application were synthesized and characterized by interfacial polycondensation method with toluene-2,4-diiso...Polyurea microcapsules about 2.5 μm in diameter containing phase change material for thermal energy storage application were synthesized and characterized by interfacial polycondensation method with toluene-2,4-diisocyanate and ethylenediamine as monomers in an emulsion system. Hexadecane was used as a phase change material and OP, which is nonionic surfactant, and used as an emulsifier. The chemical structure and thermal behavior of the microcapsules were investigated by FTIR and thermal analysis respectively. The results show encapsulated hexadecane has a good potential as a solar energy storage material.展开更多
基金Projects 50574107 supported by the National Natural Science Foundation of China 2002 by the Teaching and Research Award Program for OutstandingYoung Teachers in Higher Education Institutions of Ministry of Education of China
文摘Interfacial interactions involving Van der Waals force, hydrophobic attractive force and hydration exclusive force were investigated in this paper. The interfacial interactive free energy of a series of interfaces occurring between minerals, water, collectors and bubble was calculated. The results show that a Van der Waals attractive force and a hydrophobic attractive force exist between each mineral and water interface. The hydrophobic attractive force between molybdenite and water is markedly weaker than the hydrophobic attractive force between gangue and water. The hydrophobic attractive force between collector molecules and water is the main driving force that causes the collectors to become dispersed in the pulp. The strong hydrophobic attractive force between molybdenite and the bubble interface is the basic reason for the natural floatability of molybdenite. The Van der Waals force between molybdenite and the collectors is attractive in water solution, but it is not the cause of the main force between them. The main force that results in the collection effect is a hydrophobic attractive force caused by the Lewis acid-base interaction at the molybdenite surface. A floatation experiment shows that the adsorption intensity of the collector on the molybdenite surface is not the crucial factor for molybdenite floatation. Rather, the dispersing capability of the collector in the water phase and its selectivity for the various minerals in the floatation system are more important.
基金Project supported by the National Natural Science Foundation of China(51702101,51972119,51472088)the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program(2017BT01X137)。
文摘Photon upconversion has received substantial attention owing to its great promise in broad applications from bioimaging to other frontier fields like display,upconversion laser,information security and anticounterfeiting.A smart control and manipulation of the upconversion luminescence has always been a key topic,however,to date the most efficient mechanism for upconversion nanoparticles remains the energy transfer upconversion and recently reported energy migration mediated upconversion.Recently,we found that the interfacial energy transfer(IET)is also an efficient approach for enabling and tuning photon upconversion of lanthanide ions.Moreover,it can be used for the mechanistic understanding of the interionic interactions such as energy transfer and energy migration on the nanoscale.In this review,the recent advances of the research on the IET are summarized,the principles for designing IET process and typical examples are discussed together with its applications in both mechanistic research and frontier information security.The challenges and perspectives for future research are also commented.
文摘Polyurea microcapsules about 2.5 μm in diameter containing phase change material for thermal energy storage application were synthesized and characterized by interfacial polycondensation method with toluene-2,4-diisocyanate and ethylenediamine as monomers in an emulsion system. Hexadecane was used as a phase change material and OP, which is nonionic surfactant, and used as an emulsifier. The chemical structure and thermal behavior of the microcapsules were investigated by FTIR and thermal analysis respectively. The results show encapsulated hexadecane has a good potential as a solar energy storage material.