Delafossite CuFeO_(2) is a promising photocathode material for cost-efficiently photoelectrochemical(PEC)water splitting,but the unfavorable conductivity and fast recombination dynamics of photogenerated carriers limi...Delafossite CuFeO_(2) is a promising photocathode material for cost-efficiently photoelectrochemical(PEC)water splitting,but the unfavorable conductivity and fast recombination dynamics of photogenerated carriers limit its PEC activity for water reduction.Here,we developed a heterostructure photocathode consisting of the Cu-doped NiO(Cu:NiO)hole selective layer(HSL)and Ni-doped CuFeO_(2)(Ni:CuFeO_(2))active layer by simply annealing a homogeneous Cu-Fe oxalate layer grown on the Ni film deposited on the fluorine doped tin oxide(FTO)substrate.The obtained heterostructure of Cu:NiO/Ni:CuFeO_(2) with enhanced charge carrier transportability and high-quality interface greatly promotes the separation of photogenerated carriers.Accordingly,the Cu:NiO/Ni:CuFeO_(2) photocathode exhibits a high photocurrent density of~0.9 mA·cm^(-2 )at 0.2 V(vs.reversible hydrogen electrode,RHE),outperforming most of the reported bare CuFeO_(2) photocathodes in the literature.And the photocurrent density can be further improved to 1.2 mA·cm^(-2) after decorating NiSx cocatalyst.展开更多
In the 1940s, KIRKENDALL showed that diffusion in binary solid solutions cannot be described by only one diffusion coefficient. Rather, one has to consider the diffusivity of both species. His findings changed the tre...In the 1940s, KIRKENDALL showed that diffusion in binary solid solutions cannot be described by only one diffusion coefficient. Rather, one has to consider the diffusivity of both species. His findings changed the treatment of diffusion data and the theory of diffusion itself. A diffusion-based framework was successfully employed to explain the behaviour of the Kirkendall plane. Nonetheless, the complexity of a multiphase diffusion zone and the morphological evolution during interdiffusion requires a physico-chemical approach. The interactions in binary and more complex systems are key issues from both the fundamental and technological points of view. This paper reviews the Kirkendall effect from the circumstances of its discovery to recent developments in its understanding, with broad applicability in materials science and engineering.展开更多
A low-diffusion Ni Re Pt Al coating((Ni,Pt)Al outer layer in addition to a Re-rich diffusion barrier layer)was prepared on a Ni_(3)Al-base single crystal(SC)superalloy via electroplating and gaseous aluminizing treatm...A low-diffusion Ni Re Pt Al coating((Ni,Pt)Al outer layer in addition to a Re-rich diffusion barrier layer)was prepared on a Ni_(3)Al-base single crystal(SC)superalloy via electroplating and gaseous aluminizing treatments,wherein the electroplating procedures consisted of the composite deposition of Ni-Re followed by electroplating of Pt.In order to perform a comparison with conventional Ni Al and(Ni,Pt)Al coatings,the cyclic oxidation performance of the Ni Re Pt Al coating was evaluated at 1100 and 1150℃.We observed that the oxidation resistance of the Ni Re Pt Al coating was significantly improved by the greater presence of the residualβ-Ni Al phase in the outer layer and the lesser outward-diffusion of Mo from the substrate.In addition,the coating with the Re-rich diffusion barrier demonstrated a lower extent of interdiffusion into the substrate,where the thickness of the second reaction zone(SRZ)in the substrate alloy decreased by 25%.The mechanisms responsible for improving the oxidation resistance and decreasing the extent of SRZ formation are discussed,in which a particular attention is paid to the inhibition of the outward diffusion of Mo by the Re-based diffusion barrier.展开更多
MCrAlY(M=Ni and/or Co)overlay coating is widely used as a protective coating against high temperature oxidation and corrosion.However,due to its big difference in chemical composition with the underlying superalloy,el...MCrAlY(M=Ni and/or Co)overlay coating is widely used as a protective coating against high temperature oxidation and corrosion.However,due to its big difference in chemical composition with the underlying superalloy,elements interdiffusion occurs inevitably.One of the direct results is the formation of interdiffusion zone(IDZ)and secondary reaction zone(SRZ)with a high density of fine topological closed-packed phases(TCPs),weakening dramatically the mechanical properties of the alloy substrate.It is by now the main problem of modern high-temperature metallic coatings,but there are still hardly any reports studying the formation,growth and transformation of IDZ and SRZ in deep,as well as the precipitation of TCPs.In this work,a typical NiCrAlY coating is deposited by arc ion plating on a single-crystal superalloy N5.Elements interdiffusion between them and its relationship on microstructure were clarified.Cr rather than Al from the coating diffuses into the alloy at high temperatures and segregates immediately beneath their interface,contributing largely to the formation of IDZ.Simultaneously,diffusion of Ni from the deep alloy to IDZ leads to the formation and continuous expansion of SRZ.展开更多
Bandgap-graded materials present varying spectral responses at different positions,making them possible to be used as an alternative to photoactive materials array in multi-spectral responsive devices,thus miniaturizi...Bandgap-graded materials present varying spectral responses at different positions,making them possible to be used as an alternative to photoactive materials array in multi-spectral responsive devices,thus miniaturizing the apparatus.However,the preparation of bandgap-graded materials usually requires complicated deposition process.Here we report a facile lowtemperature solution process to make films with lateral bandgap gradients,which form spontaneously via self-spreading and interdiffusion of solutions.We show lead halide perovskite films with MAPbCl_(3)-MAPbBr_(3)and MAPbBr_(3)-MAPbI_(3)gradients,which exhibit light absorption onsets ranging from 410 to 781 nm.The bandgap-graded films were used to make self-powered multiband photodetectors,which show different spectral responses at different positions without applying bias voltage.Furthermore,self-powered spectrometers were made by using the multiband photodetectors.展开更多
To reveal the influence of substrate/coating interdiffusion on the cyclic oxidation property of a metallic coating, cyclic oxida- tion behavior of an EB-PVD CoCrAIY coating on directionally solidified Ni-based superal...To reveal the influence of substrate/coating interdiffusion on the cyclic oxidation property of a metallic coating, cyclic oxida- tion behavior of an EB-PVD CoCrAIY coating on directionally solidified Ni-based superalloy DZ125 at 1 050℃ is investigated. The 40 μm thick CoCrA1Y coating has a cyclic oxidation life of around 160 h, and the oxidation constant is 1.915× 10^-7 mg4.cm^-8.s-1. However, severe spallation of the oxides containing Co, Cr, Ni, Ta and Ti occurs with longer cyclic oxidation. The degradation in oxidation resistance for the coating is related to the depletion of A1 due to the oxide spallation and interdiffu- sion. Severe interdiffusion between the coating and underlying substrate occurs at 1 050 ℃. The composition of the substrate has an important effect on the thermal cycling lifetime of the coating. The influencing mechanism is discussed.展开更多
A NiCrAlY coating was prepared on the cast Ni-base superalloy K17 using arc ion plating. The coating was uniform, dense and well adhesive to the substrate. The oxidation kinetic curves of the alloy K17 and the coating...A NiCrAlY coating was prepared on the cast Ni-base superalloy K17 using arc ion plating. The coating was uniform, dense and well adhesive to the substrate. The oxidation kinetic curves of the alloy K17 and the coating were obtained. The results indicated that the oxidation resistance of the alloy K17 was evidently improved with NiCrAlY coatings at 900∼1100°C. As oxidation temperature rising, the interdiffusion between the coatings and substrates was enhanced. Ti atoms diffused from the substrate to the surface of coating to form the oxide, which was one of the reasons for the decrement of oxidation resistance. The oxidation resistance of NiCrAlY coating was decreased due to the spalling of pieces of oxide.展开更多
基金financially supported by the National Key Research and Development Program of China(No.2021YFA1500800)the National Natural Science Foundation of China(Nos.51825204,52072377,521888101 and 51402199)+6 种基金the Youth Innovation Promotion Association of the Chinese Academy of Sciences(No.2020192)the International Partnership Program of Chinese Academy of Sciences(No.174321KYSB20200005)China Postdoctoral Science Foundation(No.2017M621137)Liaoning Revitalization Talents Program(No.XLYC2007193)the Natural Science Foundation of Liaoning Province(Nos.2021-MS-014 and 2021NLTS1210)the University Innovation Talent Foundation of Liaoning Province(No.LR2018074)the State Key Laboratory of Fine Chemicals,Dalian University of Technology(No.KF1708)。
文摘Delafossite CuFeO_(2) is a promising photocathode material for cost-efficiently photoelectrochemical(PEC)water splitting,but the unfavorable conductivity and fast recombination dynamics of photogenerated carriers limit its PEC activity for water reduction.Here,we developed a heterostructure photocathode consisting of the Cu-doped NiO(Cu:NiO)hole selective layer(HSL)and Ni-doped CuFeO_(2)(Ni:CuFeO_(2))active layer by simply annealing a homogeneous Cu-Fe oxalate layer grown on the Ni film deposited on the fluorine doped tin oxide(FTO)substrate.The obtained heterostructure of Cu:NiO/Ni:CuFeO_(2) with enhanced charge carrier transportability and high-quality interface greatly promotes the separation of photogenerated carriers.Accordingly,the Cu:NiO/Ni:CuFeO_(2) photocathode exhibits a high photocurrent density of~0.9 mA·cm^(-2 )at 0.2 V(vs.reversible hydrogen electrode,RHE),outperforming most of the reported bare CuFeO_(2) photocathodes in the literature.And the photocurrent density can be further improved to 1.2 mA·cm^(-2) after decorating NiSx cocatalyst.
文摘In the 1940s, KIRKENDALL showed that diffusion in binary solid solutions cannot be described by only one diffusion coefficient. Rather, one has to consider the diffusivity of both species. His findings changed the treatment of diffusion data and the theory of diffusion itself. A diffusion-based framework was successfully employed to explain the behaviour of the Kirkendall plane. Nonetheless, the complexity of a multiphase diffusion zone and the morphological evolution during interdiffusion requires a physico-chemical approach. The interactions in binary and more complex systems are key issues from both the fundamental and technological points of view. This paper reviews the Kirkendall effect from the circumstances of its discovery to recent developments in its understanding, with broad applicability in materials science and engineering.
基金the Key-Area Research and Development Program of Guangdong Province(2019B010936001)financially supported by the National Natural Science Foundation of China(Grant Nos.51671202 and 51301184)。
文摘A low-diffusion Ni Re Pt Al coating((Ni,Pt)Al outer layer in addition to a Re-rich diffusion barrier layer)was prepared on a Ni_(3)Al-base single crystal(SC)superalloy via electroplating and gaseous aluminizing treatments,wherein the electroplating procedures consisted of the composite deposition of Ni-Re followed by electroplating of Pt.In order to perform a comparison with conventional Ni Al and(Ni,Pt)Al coatings,the cyclic oxidation performance of the Ni Re Pt Al coating was evaluated at 1100 and 1150℃.We observed that the oxidation resistance of the Ni Re Pt Al coating was significantly improved by the greater presence of the residualβ-Ni Al phase in the outer layer and the lesser outward-diffusion of Mo from the substrate.In addition,the coating with the Re-rich diffusion barrier demonstrated a lower extent of interdiffusion into the substrate,where the thickness of the second reaction zone(SRZ)in the substrate alloy decreased by 25%.The mechanisms responsible for improving the oxidation resistance and decreasing the extent of SRZ formation are discussed,in which a particular attention is paid to the inhibition of the outward diffusion of Mo by the Re-based diffusion barrier.
基金the National Natural Science Foundation of China Nos.51671053 and 51801021the Ministry of Industry and Information Technology Project No.MJ-2017-J-99)。
文摘MCrAlY(M=Ni and/or Co)overlay coating is widely used as a protective coating against high temperature oxidation and corrosion.However,due to its big difference in chemical composition with the underlying superalloy,elements interdiffusion occurs inevitably.One of the direct results is the formation of interdiffusion zone(IDZ)and secondary reaction zone(SRZ)with a high density of fine topological closed-packed phases(TCPs),weakening dramatically the mechanical properties of the alloy substrate.It is by now the main problem of modern high-temperature metallic coatings,but there are still hardly any reports studying the formation,growth and transformation of IDZ and SRZ in deep,as well as the precipitation of TCPs.In this work,a typical NiCrAlY coating is deposited by arc ion plating on a single-crystal superalloy N5.Elements interdiffusion between them and its relationship on microstructure were clarified.Cr rather than Al from the coating diffuses into the alloy at high temperatures and segregates immediately beneath their interface,contributing largely to the formation of IDZ.Simultaneously,diffusion of Ni from the deep alloy to IDZ leads to the formation and continuous expansion of SRZ.
基金We thank the National Natural Science Foundation of China(Nos.52203217 and 21961160720)the National Key Research and Development Program of China(No.2022YFB3803300)the Open Research Fund of Songshan Lake Materials Laboratory(No.2021SLABFK02)for financial support.
文摘Bandgap-graded materials present varying spectral responses at different positions,making them possible to be used as an alternative to photoactive materials array in multi-spectral responsive devices,thus miniaturizing the apparatus.However,the preparation of bandgap-graded materials usually requires complicated deposition process.Here we report a facile lowtemperature solution process to make films with lateral bandgap gradients,which form spontaneously via self-spreading and interdiffusion of solutions.We show lead halide perovskite films with MAPbCl_(3)-MAPbBr_(3)and MAPbBr_(3)-MAPbI_(3)gradients,which exhibit light absorption onsets ranging from 410 to 781 nm.The bandgap-graded films were used to make self-powered multiband photodetectors,which show different spectral responses at different positions without applying bias voltage.Furthermore,self-powered spectrometers were made by using the multiband photodetectors.
基金National Natural Science Foundation of China (50731001, 51071013, 51001032)National Basic Research Program of China (2010CB631200)
文摘To reveal the influence of substrate/coating interdiffusion on the cyclic oxidation property of a metallic coating, cyclic oxida- tion behavior of an EB-PVD CoCrAIY coating on directionally solidified Ni-based superalloy DZ125 at 1 050℃ is investigated. The 40 μm thick CoCrA1Y coating has a cyclic oxidation life of around 160 h, and the oxidation constant is 1.915× 10^-7 mg4.cm^-8.s-1. However, severe spallation of the oxides containing Co, Cr, Ni, Ta and Ti occurs with longer cyclic oxidation. The degradation in oxidation resistance for the coating is related to the depletion of A1 due to the oxide spallation and interdiffu- sion. Severe interdiffusion between the coating and underlying substrate occurs at 1 050 ℃. The composition of the substrate has an important effect on the thermal cycling lifetime of the coating. The influencing mechanism is discussed.
文摘A NiCrAlY coating was prepared on the cast Ni-base superalloy K17 using arc ion plating. The coating was uniform, dense and well adhesive to the substrate. The oxidation kinetic curves of the alloy K17 and the coating were obtained. The results indicated that the oxidation resistance of the alloy K17 was evidently improved with NiCrAlY coatings at 900∼1100°C. As oxidation temperature rising, the interdiffusion between the coatings and substrates was enhanced. Ti atoms diffused from the substrate to the surface of coating to form the oxide, which was one of the reasons for the decrement of oxidation resistance. The oxidation resistance of NiCrAlY coating was decreased due to the spalling of pieces of oxide.