A global prognostic model based on MOM4p1,which is a primitive equation nonBoussinesq numerical model,has been integrated with 1 400 years from the state of rest based on the realistic topography to study the long-ter...A global prognostic model based on MOM4p1,which is a primitive equation nonBoussinesq numerical model,has been integrated with 1 400 years from the state of rest based on the realistic topography to study the long-term pattern of combined wind-driven and thermodynamically-driven general circulation.The model is driven by monthly climatological mean forces and includes 192×189 horizontal grids and 31 pressure-based vertical levels.The main objective is to investigate the mass and heat transports at interbasin passages and their compensations and roles in the global ocean circulation under equilibrium state of long-term spin up.The kinetic energy analysis divides the spin up process into three stages:the quasi-stable state of wind driven current,the growing phase of thermodynamical circulation and the equilibrium state of thermohaline circulation.It is essential to spin up over a thousand years in order to reach the thermohaline equilibrium state from a state of rest.The Arctic Throughflow from the Bering Strait to the Greenland Sea and the Indonesian Throughflow(ITF) are captured and examined with their compensations and existing data.Analysis reveals that the slope structures of sea surface height are the dynamical driving mechanism of the Pacific-Arctic-Atlantic throughflow and ITF.The analysis denotes,in spite of O(1.4×106m3/s) of the southward volume transport in the northern Atlantic,that there is still O(1 PW) of heat transported northward since the northward currents in the upper layer carry much higher temperature water than the southward flowing northern Atlantic deep water(NADW).Meridional volume and heat transports are focused on the contributions to NADW renewals and Atlantic meridional overturning circulation(AMOC).Quantitative descriptions of the interbasin exchanges are explained by meridional compensations and supported by previous observations and numerical modeling results.Analysis indicates that the volume and heat exchanges on the interbasin passages proposed in this art展开更多
With the objective of providing a relatively accurate and complete diagram,the global scale interbasin transport of atmospheric moisture on the basis of the NCEP/NCAR reanalysis data for the period 1980 to 1994 is eva...With the objective of providing a relatively accurate and complete diagram,the global scale interbasin transport of atmospheric moisture on the basis of the NCEP/NCAR reanalysis data for the period 1980 to 1994 is evaluated.The results show that the net zonal vapor flux for the Pacific,the Atlantic and the Indian Oceans is 0.25 Sv,—0.68 Sv and —0.29 Sv respectively.The marking differences in the zonal moisture budget among individual basins are speculated as the reason that dominates the differences in the salinity between the Pacific and the Atlantic Oceans.Though current evaluation on the net zonal moisture flux for the Atlantic basin is generally in qualitative agreement with the previous estimate,quantitative discrepancy is found to exist.According to current statistics, the tropical easterlies carry water vapor of 0.43 Sv from the Atlantic basin across Central America into the Pacific,and the northern westerlies allow water vapor of 0.25 Sv to escape from the Pacific. Quantitative analyses also reveal that the seasonal variation of net zonal vapor flux for the Pacific and the Indian Oceans is stronger than that for the Atlantic,which may be favorable for the maintenance of high salinity feature of the Atlantic Ocean.展开更多
Based on historical observations, ventilation of the Sulu Sea (SS) is investigated and, its interbasin exchange is also partly discussed. The results suggest that near the surface the water renewal process not only ...Based on historical observations, ventilation of the Sulu Sea (SS) is investigated and, its interbasin exchange is also partly discussed. The results suggest that near the surface the water renewal process not only occurs through the Mindoro Strait (MS) and the Sibutu Passage, but also depends on the inflows through the Surigao Strait and the Bohol Sea from the Pacific and through the Balabac Strait from the South China Sea (SCS). Both inflows are likely persistent year round and their transports might not be negligible. Below the surface, the core layer of the Subtropical LowerWater (SLW) lies at about 200 m, which enters the SS through the Mindoro Strait not hampered by topography. Moreover, there is no indication of SLW inflow through the Sibutu Passage even though the channel is deep enough to allow its passage. The most significant ventilation process of the SS takes place in depths from 20a m to about 1200 m where intermediate convection driven by quasi-steady inflows through the Mindoro and Panay straits (MS-PS) dominates. Since the invaded water is drawn from the upper part of the North Pacific Intermediate Water (NPIW) of the SCS, it is normally not dense enough to sink to the bottom. Hence, the convective process generally can only reach some intermediate depths resulting in a layer of weak salinity minimum (about 34.45). Below that layer, there is the Sulu Sea Deep Water (SSDW) homogeneously distributed from 1200 m down to the sea floor, of which the salinity is only a bit higher (about 34.46) above the minimum. Observational evidence shows that hydrographic conditions near the entrance of the MS in the SCS vary significantly from season to season, which make it possi- ble to provide the MS-PS overflowwith denser water of higher salinity sporadically. It is hence proposed that the SSDW is derived from intermittent deed convection resulted from DroDertv changes of the MS-PS inflow.展开更多
Interbasin water-transfer schemes provide an engineering solution for reconciling the conflict between water demand and availability.In the context of climate change,which brings great uncertainties to water resource ...Interbasin water-transfer schemes provide an engineering solution for reconciling the conflict between water demand and availability.In the context of climate change,which brings great uncertainties to water resource distribution,interbasin water transfer plays an increasingly important role in the global water–food–energy nexus.However,the transfer of water resources simultaneously changes the hydrological regime and the characteristics of local water bodies,affecting biotic communities accordingly.Compared with high economic and technical inputs water-transfer projects require,the environmental and ecological implications of water-transfer schemes have been inadequately addressed.This work selects the largest water-transfer project in China,the South-to-North Water Diversion(SNWD)Project,to critically review its eco-environmental impacts on donor and recipient basins,as well as on regions along the diversion route.The two operated routes of the SNWD Project represent two typical water diversion approaches:The Middle Route uses an excavated canal,while the East Route connects existent river channels.An overview of the eco-environmental implications of these two routes is valuable for the design and optimization of future water-transfer megaprojects.展开更多
基金The National Basic Research Program Grant of China under contact No.2011CB403502the International Cooperation Program Grant of China under contact No.2010DFB23580+3 种基金the International Cooperation Program of State Oceanic Administration of China under contract No.QY0213022project supported by the First Institute of Oceanographythe State Oceanic Administration of China under contract No.2010G06author Guan Yuping is supported by The National Natural Science Foundation of China under contact Nos 40976011 and 91228202
文摘A global prognostic model based on MOM4p1,which is a primitive equation nonBoussinesq numerical model,has been integrated with 1 400 years from the state of rest based on the realistic topography to study the long-term pattern of combined wind-driven and thermodynamically-driven general circulation.The model is driven by monthly climatological mean forces and includes 192×189 horizontal grids and 31 pressure-based vertical levels.The main objective is to investigate the mass and heat transports at interbasin passages and their compensations and roles in the global ocean circulation under equilibrium state of long-term spin up.The kinetic energy analysis divides the spin up process into three stages:the quasi-stable state of wind driven current,the growing phase of thermodynamical circulation and the equilibrium state of thermohaline circulation.It is essential to spin up over a thousand years in order to reach the thermohaline equilibrium state from a state of rest.The Arctic Throughflow from the Bering Strait to the Greenland Sea and the Indonesian Throughflow(ITF) are captured and examined with their compensations and existing data.Analysis reveals that the slope structures of sea surface height are the dynamical driving mechanism of the Pacific-Arctic-Atlantic throughflow and ITF.The analysis denotes,in spite of O(1.4×106m3/s) of the southward volume transport in the northern Atlantic,that there is still O(1 PW) of heat transported northward since the northward currents in the upper layer carry much higher temperature water than the southward flowing northern Atlantic deep water(NADW).Meridional volume and heat transports are focused on the contributions to NADW renewals and Atlantic meridional overturning circulation(AMOC).Quantitative descriptions of the interbasin exchanges are explained by meridional compensations and supported by previous observations and numerical modeling results.Analysis indicates that the volume and heat exchanges on the interbasin passages proposed in this art
基金the Key Project of"Studies on the Climate Variability over China and the Globe during the 20th Century"(No.49635190)National Natural Science Foundation of China and the"National Key Project-Studies on S
文摘With the objective of providing a relatively accurate and complete diagram,the global scale interbasin transport of atmospheric moisture on the basis of the NCEP/NCAR reanalysis data for the period 1980 to 1994 is evaluated.The results show that the net zonal vapor flux for the Pacific,the Atlantic and the Indian Oceans is 0.25 Sv,—0.68 Sv and —0.29 Sv respectively.The marking differences in the zonal moisture budget among individual basins are speculated as the reason that dominates the differences in the salinity between the Pacific and the Atlantic Oceans.Though current evaluation on the net zonal moisture flux for the Atlantic basin is generally in qualitative agreement with the previous estimate,quantitative discrepancy is found to exist.According to current statistics, the tropical easterlies carry water vapor of 0.43 Sv from the Atlantic basin across Central America into the Pacific,and the northern westerlies allow water vapor of 0.25 Sv to escape from the Pacific. Quantitative analyses also reveal that the seasonal variation of net zonal vapor flux for the Pacific and the Indian Oceans is stronger than that for the Atlantic,which may be favorable for the maintenance of high salinity feature of the Atlantic Ocean.
基金The Chinese Ministry of Science and Technology through the National Basic Research Program under contract No.2009CB421205
文摘Based on historical observations, ventilation of the Sulu Sea (SS) is investigated and, its interbasin exchange is also partly discussed. The results suggest that near the surface the water renewal process not only occurs through the Mindoro Strait (MS) and the Sibutu Passage, but also depends on the inflows through the Surigao Strait and the Bohol Sea from the Pacific and through the Balabac Strait from the South China Sea (SCS). Both inflows are likely persistent year round and their transports might not be negligible. Below the surface, the core layer of the Subtropical LowerWater (SLW) lies at about 200 m, which enters the SS through the Mindoro Strait not hampered by topography. Moreover, there is no indication of SLW inflow through the Sibutu Passage even though the channel is deep enough to allow its passage. The most significant ventilation process of the SS takes place in depths from 20a m to about 1200 m where intermediate convection driven by quasi-steady inflows through the Mindoro and Panay straits (MS-PS) dominates. Since the invaded water is drawn from the upper part of the North Pacific Intermediate Water (NPIW) of the SCS, it is normally not dense enough to sink to the bottom. Hence, the convective process generally can only reach some intermediate depths resulting in a layer of weak salinity minimum (about 34.45). Below that layer, there is the Sulu Sea Deep Water (SSDW) homogeneously distributed from 1200 m down to the sea floor, of which the salinity is only a bit higher (about 34.46) above the minimum. Observational evidence shows that hydrographic conditions near the entrance of the MS in the SCS vary significantly from season to season, which make it possi- ble to provide the MS-PS overflowwith denser water of higher salinity sporadically. It is hence proposed that the SSDW is derived from intermittent deed convection resulted from DroDertv changes of the MS-PS inflow.
基金supported by National Key Science and Technology Program of China(2022YFC3203802)National Natural Science Foundation of China(52121006,92047303,and 51879165)+1 种基金supported by the Xplorer Prizesupported by the Young Elite Scientists Sponsorship Program by China Association for Science and Technology(2021QNRC001)。
文摘Interbasin water-transfer schemes provide an engineering solution for reconciling the conflict between water demand and availability.In the context of climate change,which brings great uncertainties to water resource distribution,interbasin water transfer plays an increasingly important role in the global water–food–energy nexus.However,the transfer of water resources simultaneously changes the hydrological regime and the characteristics of local water bodies,affecting biotic communities accordingly.Compared with high economic and technical inputs water-transfer projects require,the environmental and ecological implications of water-transfer schemes have been inadequately addressed.This work selects the largest water-transfer project in China,the South-to-North Water Diversion(SNWD)Project,to critically review its eco-environmental impacts on donor and recipient basins,as well as on regions along the diversion route.The two operated routes of the SNWD Project represent two typical water diversion approaches:The Middle Route uses an excavated canal,while the East Route connects existent river channels.An overview of the eco-environmental implications of these two routes is valuable for the design and optimization of future water-transfer megaprojects.