Global urbanization is exerting severe stress and having far-reaching impacts on the eco-environment, and yet there exists a complex non-linear coupling relationship between the two. Research on the interactive coupli...Global urbanization is exerting severe stress and having far-reaching impacts on the eco-environment, and yet there exists a complex non-linear coupling relationship between the two. Research on the interactive coupling effect between urbanization and the eco-environment will be a popular area of study and frontier in international earth system science and sustainability science in the next 10 years, while also being a high-priority research topic of particular interest to international organizations. This paper systematically collates and summarizes the international progress made in research on interactive coupling theory, coupling relationships, coupling mechanisms, coupling laws, coupling thresholds, coupling models and coupling optimization decision support systems. The research shows that urbanization and eco-environment interactive coupling theories include the Kuznets curve theory, telecoupling theory, planetary boundaries theory, footprint family theory and urban metabolism theory; most research on interactive coupling relationships is concerned with single- element coupling relationships, such as those between urbanization and water, land, atmosphere, climate change, ecosystems and biodiversity; the majority of research on interactive coupling mechanisms and laws focuses on five research paradigms, including coupled human and nature systems, complex social-ecological systems, urban ecosystems, social-economic-natural complex ecosystems, and urbanization development and eco-environment constraint ring; the majority of interactive coupling simulations use STIRPAT models, coupling degree models, multi-agent system models and big data urban computer models; and research has been carried out on urbanization and eco-environment coupling thresholds, coercing risk and optimal decision support systems. An objective evaluation of progress in international research on interactive coupling between urbanization and the eco-environment suggests that there are six main research focal points and six areas lacking resea展开更多
Objectively, a complex interactive coercing relationship exists between urbanization and eco-environment, and the research of this relationship is primarily divided into three schools, i.e., interactive coercion theor...Objectively, a complex interactive coercing relationship exists between urbanization and eco-environment, and the research of this relationship is primarily divided into three schools, i.e., interactive coercion theory, interactive promotion theory and coupling symbiosis theory. Harmonizing the relationship between urbanization and eco-environment is not only an important proposition for the national development plan but also the only way to promote healthy urbanization. Based on an analysis of urbanization process and its relationship with the eco-environment, this article analyzes interactive coercing effects between urbanization and eco-environment from three perspectives of population urbanization, economic urbanization and spatial urbanization, respectively, and analyzes risk effects of the interactive coercion. Further, it shows six basic laws followed by interactive coercion between urbanization and eco-environment, namely, coupling fission law, dynamic hierarchy law, stochastic fluctuation law, non-linear synergetic law, threshold value law and forewarning law, and divides the interactive coercing process into five stages, namely, low-level coordinate, antagonistic, break-in, ameliorative and high-grade coordinate. Based on the geometric derivation, the interactive coercing relationship between urbanization and eco-environment is judged to be non-linear and it can be explained by a double-exponential function formed by the combination of power and exponential functions. Then, the evolutionary types of the interactive coercing relationship are divided into nine ones: rudimentary coordinating, ecology-dominated, synchronal coordinating, urbanization lagging, stepwise break-in, exorbitant urbanization, fragile ecology, rudimentary break-in and unsustainable types. Finally, based on an interactive coercion model, the degree of interactive coercion can be examined, and then, an evolutionary cycle can be divided into four phases, namely rudimentary symbiosis, harmonious development, utmost increasing and spiral展开更多
Mega-urban agglomerations are strategic core areas for national economic development and the main regions of new urbanization. They also have important roles in shifting the global economic center of gravity to China....Mega-urban agglomerations are strategic core areas for national economic development and the main regions of new urbanization. They also have important roles in shifting the global economic center of gravity to China. However, the development of mega-urban agglomerations has triggered the interactive coercion between resources and the eco-envi- ronment. The interactive coupled effects between urbanization and the eco-environment in mega-urban agglomerations represent frontier and high-priority research topics in the field of Earth system science over the next decade. In this paper, we carried out systematic theo- retical analysis of the interactive coupling mechanisms and coercing effects between ur- banization and the eco-environment in mega-urban agglomerations. In detail, we analyzed the nonlinear-coupled relationships and the coupling characteristics between natural and human elements in mega-urban agglomerations. We also investigated the interactive coercion intensities between internal and external elements, and the mechanisms and patterns of local couplings and telecouplings in mega-urban agglomeration systems, which are affected by key internal and external control elements. In addition, we proposed the interactive coupling theory on urbanization and the eco-environment in mega-urban agglomerations. Furthermore we established a spatiotemporal dynamic coupling model with multi-element, multi-scale, multi-scenario, multi-module and multi-agent integrations, which can be used to develop an intelligent decision support system for sustainable development of mega-urban agglomera- tions. In general, our research may provide theoretical guidance and method support to solve problems related to mega-urban agglomerations and maintain their sustainable development.展开更多
基金Major Program of the National Natural Science Foundation of China,No.41590840,No.41590842
文摘Global urbanization is exerting severe stress and having far-reaching impacts on the eco-environment, and yet there exists a complex non-linear coupling relationship between the two. Research on the interactive coupling effect between urbanization and the eco-environment will be a popular area of study and frontier in international earth system science and sustainability science in the next 10 years, while also being a high-priority research topic of particular interest to international organizations. This paper systematically collates and summarizes the international progress made in research on interactive coupling theory, coupling relationships, coupling mechanisms, coupling laws, coupling thresholds, coupling models and coupling optimization decision support systems. The research shows that urbanization and eco-environment interactive coupling theories include the Kuznets curve theory, telecoupling theory, planetary boundaries theory, footprint family theory and urban metabolism theory; most research on interactive coupling relationships is concerned with single- element coupling relationships, such as those between urbanization and water, land, atmosphere, climate change, ecosystems and biodiversity; the majority of research on interactive coupling mechanisms and laws focuses on five research paradigms, including coupled human and nature systems, complex social-ecological systems, urban ecosystems, social-economic-natural complex ecosystems, and urbanization development and eco-environment constraint ring; the majority of interactive coupling simulations use STIRPAT models, coupling degree models, multi-agent system models and big data urban computer models; and research has been carried out on urbanization and eco-environment coupling thresholds, coercing risk and optimal decision support systems. An objective evaluation of progress in international research on interactive coupling between urbanization and the eco-environment suggests that there are six main research focal points and six areas lacking resea
基金Under the auspices of Key Project of National Natural Science Foundation of China (No. 40335049),National Natural Science Foundation of China (No. 40971101)
文摘Objectively, a complex interactive coercing relationship exists between urbanization and eco-environment, and the research of this relationship is primarily divided into three schools, i.e., interactive coercion theory, interactive promotion theory and coupling symbiosis theory. Harmonizing the relationship between urbanization and eco-environment is not only an important proposition for the national development plan but also the only way to promote healthy urbanization. Based on an analysis of urbanization process and its relationship with the eco-environment, this article analyzes interactive coercing effects between urbanization and eco-environment from three perspectives of population urbanization, economic urbanization and spatial urbanization, respectively, and analyzes risk effects of the interactive coercion. Further, it shows six basic laws followed by interactive coercion between urbanization and eco-environment, namely, coupling fission law, dynamic hierarchy law, stochastic fluctuation law, non-linear synergetic law, threshold value law and forewarning law, and divides the interactive coercing process into five stages, namely, low-level coordinate, antagonistic, break-in, ameliorative and high-grade coordinate. Based on the geometric derivation, the interactive coercing relationship between urbanization and eco-environment is judged to be non-linear and it can be explained by a double-exponential function formed by the combination of power and exponential functions. Then, the evolutionary types of the interactive coercing relationship are divided into nine ones: rudimentary coordinating, ecology-dominated, synchronal coordinating, urbanization lagging, stepwise break-in, exorbitant urbanization, fragile ecology, rudimentary break-in and unsustainable types. Finally, based on an interactive coercion model, the degree of interactive coercion can be examined, and then, an evolutionary cycle can be divided into four phases, namely rudimentary symbiosis, harmonious development, utmost increasing and spiral
基金The Major Program of National Natural Science Foundation of China, No.41590840, No.41590842
文摘Mega-urban agglomerations are strategic core areas for national economic development and the main regions of new urbanization. They also have important roles in shifting the global economic center of gravity to China. However, the development of mega-urban agglomerations has triggered the interactive coercion between resources and the eco-envi- ronment. The interactive coupled effects between urbanization and the eco-environment in mega-urban agglomerations represent frontier and high-priority research topics in the field of Earth system science over the next decade. In this paper, we carried out systematic theo- retical analysis of the interactive coupling mechanisms and coercing effects between ur- banization and the eco-environment in mega-urban agglomerations. In detail, we analyzed the nonlinear-coupled relationships and the coupling characteristics between natural and human elements in mega-urban agglomerations. We also investigated the interactive coercion intensities between internal and external elements, and the mechanisms and patterns of local couplings and telecouplings in mega-urban agglomeration systems, which are affected by key internal and external control elements. In addition, we proposed the interactive coupling theory on urbanization and the eco-environment in mega-urban agglomerations. Furthermore we established a spatiotemporal dynamic coupling model with multi-element, multi-scale, multi-scenario, multi-module and multi-agent integrations, which can be used to develop an intelligent decision support system for sustainable development of mega-urban agglomera- tions. In general, our research may provide theoretical guidance and method support to solve problems related to mega-urban agglomerations and maintain their sustainable development.