In angiosperms,floral transition is a key developmental transition from the vegetative to reproductive growth,and requires precise regulation to maximize the reproductive success.A complex regulatory network governs t...In angiosperms,floral transition is a key developmental transition from the vegetative to reproductive growth,and requires precise regulation to maximize the reproductive success.A complex regulatory network governs this transition through integrating flowering pathways in response to multiple exogenous and endogenous cues.Phytohormones are essential for proper plant developmental regulation and have been extensively studied for their involvement in the floral transition.Among various phytohormones,gibberellin(GA)plays a major role in affecting flowering in the model plant Arabidopsis thaliana.The GA pathway interact with other flowering genetic pathways and phytohormone signaling pathways through either DELLA proteins or mediating GA homeostasis.In this review,we summarize the recent advances in understanding the mechanisms of DELLA-mediated GA pathway in flowering time control in Arabidopsis,and discuss its possible link with other phytohormone pathways during the floral transition.展开更多
A future smart grid must fulfill the vision of the Energy Internet in which millions of people produce their own energy from renewables in their homes, offices, and factories and share it with each other. Electric veh...A future smart grid must fulfill the vision of the Energy Internet in which millions of people produce their own energy from renewables in their homes, offices, and factories and share it with each other. Electric vehicles and local energy storage will be widely deployed. Internet technology will be utilized to transform the power grid into an energysharing inter-grid. To prepare for the future, a smart grid with intelligent periphery, or smart GRIP, is proposed. The building blocks of GRIP architecture are called clusters and include an energy-management system (EMS)-controlled transmission grid in the core and distribution grids, micro-grids, and smart buildings and homes on the periphery; all of which are hierarchically structured. The layered architecture of GRIP allows a seamless transition from the present to the future and plug-and-play interoperability. The basic functions of a cluster consist of (1) dispatch, (2) smoothing, and (3) mitigation. A risk-limiting dispatch methodology is presented; a new device, called the electric spring, is developed for smoothing out fluctuations in periphery clusters; and means to mitigate failures are discussed.展开更多
基金supported by the Singapore National Research Foundation Investigatorship Programme (NRF-NRFI2016-02)the intramural research support from National University of Singapore and Temasek Life Sciences Laboratory
文摘In angiosperms,floral transition is a key developmental transition from the vegetative to reproductive growth,and requires precise regulation to maximize the reproductive success.A complex regulatory network governs this transition through integrating flowering pathways in response to multiple exogenous and endogenous cues.Phytohormones are essential for proper plant developmental regulation and have been extensively studied for their involvement in the floral transition.Among various phytohormones,gibberellin(GA)plays a major role in affecting flowering in the model plant Arabidopsis thaliana.The GA pathway interact with other flowering genetic pathways and phytohormone signaling pathways through either DELLA proteins or mediating GA homeostasis.In this review,we summarize the recent advances in understanding the mechanisms of DELLA-mediated GA pathway in flowering time control in Arabidopsis,and discuss its possible link with other phytohormone pathways during the floral transition.
基金sponsored by National Key Basic Research Program of China (973 Program) (2012CB215102) for WuUS National Science Foundation Award (1135872) for VaraiyaHong Kong RGC Theme-based Research Project (T23-701/14-N) for Hui
文摘A future smart grid must fulfill the vision of the Energy Internet in which millions of people produce their own energy from renewables in their homes, offices, and factories and share it with each other. Electric vehicles and local energy storage will be widely deployed. Internet technology will be utilized to transform the power grid into an energysharing inter-grid. To prepare for the future, a smart grid with intelligent periphery, or smart GRIP, is proposed. The building blocks of GRIP architecture are called clusters and include an energy-management system (EMS)-controlled transmission grid in the core and distribution grids, micro-grids, and smart buildings and homes on the periphery; all of which are hierarchically structured. The layered architecture of GRIP allows a seamless transition from the present to the future and plug-and-play interoperability. The basic functions of a cluster consist of (1) dispatch, (2) smoothing, and (3) mitigation. A risk-limiting dispatch methodology is presented; a new device, called the electric spring, is developed for smoothing out fluctuations in periphery clusters; and means to mitigate failures are discussed.