For the terminal guidance problem of missiles intercepting maneuvering targets in the three-dimensional space, the design of guidance laws for non-decoupling three-dimensional engage- ment geometry is studied. Firstly...For the terminal guidance problem of missiles intercepting maneuvering targets in the three-dimensional space, the design of guidance laws for non-decoupling three-dimensional engage- ment geometry is studied. Firstly, by introducing a finite time integral sliding mode manifold, a novel guidance law based on the integral sliding mode control is presented with the target acceler- ation as a known bounded external disturbance. Then, an improved adaptive guidance law based on the integral sliding mode control without the information of the upper bound on the target accel- eration is developed, where the upper bound of the target acceleration is estimated online by a designed adaptive law. The both presented guidance laws can make sure that the elevation angular rate of the line-of-sight and the azimuth angular rate of the line-of-sight converge to zero in finite time. In the end, the results of the guidance performance for the proposed guidance laws are pre- sented by numerical simulations. Although the designed guidance laws are developed for the con- stant speed missiles, the simulation results for the time-varying speed missiles are also shown to further confirm the designed guidance laws.展开更多
A fault tolerant control (FTC) design technique against actuator stuck faults is investigated using integral-type sliding mode control (ISMC) with application to spacecraft attitude maneuvering control system. The...A fault tolerant control (FTC) design technique against actuator stuck faults is investigated using integral-type sliding mode control (ISMC) with application to spacecraft attitude maneuvering control system. The principle of the proposed FTC scheme is to design an integral-type sliding mode attitude controller using on-line parameter adaptive updating law to compensate for the effects of stuck actuators. This adaptive law also provides both the estimates of the system parameters and external disturbances such that a prior knowledge of the spacecraft inertia or boundedness of disturbances is not required. Moreover, by including the integral feedback term, the designed controller can not only tolerate actuator stuck faults, but also compensate the disturbances with constant components. For the synthesis of controller, the fault time, patterns and values are unknown in advance, as motivated from a practical spacecraft control application. Complete stability and performance analysis are presented and illustrative simulation results of application to a spacecraft show that high precise attitude control with zero steady-error is successfully achieved using various scenarios of stuck failures in actuators.展开更多
针对四旋翼无人机轨迹跟踪过程易受外界未知干扰而引起跟踪误差的问题,设计了基于积分反步法的滑模位置控制器。在该控制系统中,位置回路采用滑模积分反步法(sliding mode integral backstepping,IBS-SMC)非线性控制方法,姿态回路采用...针对四旋翼无人机轨迹跟踪过程易受外界未知干扰而引起跟踪误差的问题,设计了基于积分反步法的滑模位置控制器。在该控制系统中,位置回路采用滑模积分反步法(sliding mode integral backstepping,IBS-SMC)非线性控制方法,姿态回路采用经典比例积分微分(proportion integration differentiation,PID)控制方法。通过仿真对PID、线性二次型调节器、IBS-SMC进行了比较。仿真结果表明与传统方法相比,IBS-SMC法具有更好的抗干扰能力与控制精度。最后通过飞行实验,检验了控制算法可行性。实验结果表明,所设计的IBS-SMC是一种符合工程实际的控制方法。展开更多
基金financial support provided by the National Natural Science Foundation of China(Nos.61174037 and 61021002)the Aeronautical Science Foundation of China(No.20140177002)
文摘For the terminal guidance problem of missiles intercepting maneuvering targets in the three-dimensional space, the design of guidance laws for non-decoupling three-dimensional engage- ment geometry is studied. Firstly, by introducing a finite time integral sliding mode manifold, a novel guidance law based on the integral sliding mode control is presented with the target acceler- ation as a known bounded external disturbance. Then, an improved adaptive guidance law based on the integral sliding mode control without the information of the upper bound on the target accel- eration is developed, where the upper bound of the target acceleration is estimated online by a designed adaptive law. The both presented guidance laws can make sure that the elevation angular rate of the line-of-sight and the azimuth angular rate of the line-of-sight converge to zero in finite time. In the end, the results of the guidance performance for the proposed guidance laws are pre- sented by numerical simulations. Although the designed guidance laws are developed for the con- stant speed missiles, the simulation results for the time-varying speed missiles are also shown to further confirm the designed guidance laws.
基金National Natural Science Foundation of China(61004072)Fundamental Research Funds for the Central Universities(HIT.NSRIF.2009003)+1 种基金Research Fund for the Doctoral Program of Higher Education of China (20070213061, 20102302110031)Scientific Research Foundation for the Returned Overseas Chinese Scholars of Harbin (2010RFLXG001)
文摘A fault tolerant control (FTC) design technique against actuator stuck faults is investigated using integral-type sliding mode control (ISMC) with application to spacecraft attitude maneuvering control system. The principle of the proposed FTC scheme is to design an integral-type sliding mode attitude controller using on-line parameter adaptive updating law to compensate for the effects of stuck actuators. This adaptive law also provides both the estimates of the system parameters and external disturbances such that a prior knowledge of the spacecraft inertia or boundedness of disturbances is not required. Moreover, by including the integral feedback term, the designed controller can not only tolerate actuator stuck faults, but also compensate the disturbances with constant components. For the synthesis of controller, the fault time, patterns and values are unknown in advance, as motivated from a practical spacecraft control application. Complete stability and performance analysis are presented and illustrative simulation results of application to a spacecraft show that high precise attitude control with zero steady-error is successfully achieved using various scenarios of stuck failures in actuators.