An elementary formula to know the number of primes in the interval (x, 2x) close to the exact figure for a fixed x is given here. A new elementary equation is derived (a relation between prime numbers and composite nu...An elementary formula to know the number of primes in the interval (x, 2x) close to the exact figure for a fixed x is given here. A new elementary equation is derived (a relation between prime numbers and composite numbers distributed in the interval [1, 2x]). An elementary method to know the number of primes in a given magnitude is suitably placed in the form of a general formula, and we have proved it. The general formula is applied to the terms of the equation, and a tactical simplification of the terms gives rise to an expression whose verification envisages scope for its further studies.展开更多
The application of the Euclidean division theorem for the positive integers allowed us to establish a set which contains all the prime numbers and this set we called it set of supposedly prime numbers and we noted it ...The application of the Euclidean division theorem for the positive integers allowed us to establish a set which contains all the prime numbers and this set we called it set of supposedly prime numbers and we noted it E<sub>sp</sub>. We subsequently established from the previous set the set of non-prime numbers (the set of numbers belonging to this set and which are not prime) denoted E<sub>np</sub>. We then extracted from the set of supposedly prime numbers the numbers which are not prime and the set of remaining number constitutes the set of prime numbers denoted E<sub>p</sub>. We have deduced from the previous set, the set of prime numbers between two natural numbers. We have explained during our demonstrations the origin of the twin prime numbers and the structure of the chain of prime numbers.展开更多
We generalize the congruences of Friedmann-Tamarkine (1909), Lehmer (1938), and Ernvall-Metsänkyla (1991) on the sums of powers of integers weighted by powers of the Fermat quotients to the next Fermat quotient p...We generalize the congruences of Friedmann-Tamarkine (1909), Lehmer (1938), and Ernvall-Metsänkyla (1991) on the sums of powers of integers weighted by powers of the Fermat quotients to the next Fermat quotient power, namely to the third power of the Fermat quotient. Using this result and the Gessel identity (2005) combined with our past work (2021), we are able to relate residues of some truncated convolutions of Bernoulli numbers with some Ernvall-Metsänkyla residues to residues of some full convolutions of the same kind. We also establish some congruences concerning other related weighted sums of powers of integers when these sums are weighted by some analogs of the Teichmüller characters.展开更多
In block ciphers,the nonlinear components,also known as sub-stitution boxes(S-boxes),are used with the purpose of inducing confusion in cryptosystems.For the last decade,most of the work on designing S-boxes over the ...In block ciphers,the nonlinear components,also known as sub-stitution boxes(S-boxes),are used with the purpose of inducing confusion in cryptosystems.For the last decade,most of the work on designing S-boxes over the points of elliptic curves has been published.The main purpose of these studies is to hide data and improve the security levels of crypto algorithms.In this work,we design pair of nonlinear components of a block cipher over the residue class of Gaussian integers(GI).The fascinating features of this structure provide S-boxes pair at a time by fixing three parameters.But the prime field dependent on the Elliptic curve(EC)provides one S-box at a time by fixing three parameters a,b,and p.The newly designed pair of S-boxes are assessed by various tests like nonlinearity,bit independence criterion,strict avalanche criterion,linear approximation probability,and differential approximation probability.展开更多
In block ciphers,the nonlinear components,also known as substitution boxes(S-boxes),are used with the purpose to induce confusion in cryptosystems.For the last decade,most of the work on designing S-boxes over the poi...In block ciphers,the nonlinear components,also known as substitution boxes(S-boxes),are used with the purpose to induce confusion in cryptosystems.For the last decade,most of the work on designing S-boxes over the points of elliptic curves,chaotic maps,and Gaussian integers has been published.The main purpose of these studies is to hide data and improve the security levels of crypto algorithms.In this work,we design pair of nonlinear components of a block cipher over the residue class of Eisenstein integers(EI).The fascinating features of this structure provide S-boxes pair at a time by fixing three parameters.However,in the same way,by taking three fixed parameters only one S-box is obtained through a prime field-dependent Elliptic curve(EC),chaotic maps,and Gaussian integers.The newly designed pair of S-boxes are assessed by various tests like nonlinearity,bit independence criterion,strict avalanche criterion,linear approximation probability,and differential approximation probability.展开更多
If Goldbach’s conjecture is true, then for each prime number p there is at least one pair of primes symmetric with respect to p and whose sum is 2p. In the multiplicative number theory, covering the positive integers...If Goldbach’s conjecture is true, then for each prime number p there is at least one pair of primes symmetric with respect to p and whose sum is 2p. In the multiplicative number theory, covering the positive integers with primes, during the prime factorization, may be viewed as being the outcome of a parallel system which functions properly if and only if Euler’s formula of the product of the reciprocals of the primes is true. An exact formula for the number of primes less than or equal to an arbitrary bound is given. This formula may be implemented using Wolfram’s computer package Mathematica.展开更多
The distribution of twin prime numbers is discussed. The research method of corresponding prime number distribution is proposed. The distribution of prime numbers corresponding to integers and composite numbers is dis...The distribution of twin prime numbers is discussed. The research method of corresponding prime number distribution is proposed. The distribution of prime numbers corresponding to integers and composite numbers is discussed. Through the corresponding prime distribution rate of integers and composite numbers, it is found that the corresponding prime distribution rate of composite numbers approaches the corresponding prime distribution rate of integers. The distribution principle of corresponding prime number of composite number is proved. The twin prime distribution theorem is obtained. The number of twin prime numbers is thus obtained. It provides a practical way to study the conjecture of twin prime numbers.展开更多
For m = 3, 4,..., the polygonal numbers of order m are given by pm(n) =(m- 2) n2 + n(n= 0, 1, 2,...). For positive integers a, b, c and i, j, k 3 with max{i, j, k} 5, we call the triple(api, bpj, cpk)universal if for ...For m = 3, 4,..., the polygonal numbers of order m are given by pm(n) =(m- 2) n2 + n(n= 0, 1, 2,...). For positive integers a, b, c and i, j, k 3 with max{i, j, k} 5, we call the triple(api, bpj, cpk)universal if for any n = 0, 1, 2,..., there are nonnegative integers x, y, z such that n = api(x) + bpj(y)+ cpk(z). We show that there are only 95 candidates for universal triples(two of which are(p4, p5, p6) and(p3, p4, p27)), and conjecture that they are indeed universal triples. For many triples(api, bpj, cpk)(including(p3, 4p4, p5),(p4, p5, p6) and(p4, p4, p5)), we prove that any nonnegative integer can be written in the form api(x) + bpj(y) + cpk(z) with x, y, z ∈ Z. We also show some related new results on ternary quadratic forms,one of which states that any nonnegative integer n ≡ 1(mod 6) can be written in the form x2+ 3y2+ 24z2 with x, y, z ∈ Z. In addition, we pose several related conjectures one of which states that for any m = 3, 4,...each natural number can be expressed as pm+1(x1) + pm+2(x2) + pm+3(x3) + r with x1, x2, x3 ∈ {0, 1, 2,...}and r ∈ {0,..., m- 3}.展开更多
In our earlier paper,we generalize the one-parameter(c)family of inhomoge-neous first-order differential operator representations of the orthogonal Lie algebras arising from conformal transformations to those of ortho...In our earlier paper,we generalize the one-parameter(c)family of inhomoge-neous first-order differential operator representations of the orthogonal Lie algebras arising from conformal transformations to those of orthosymplectic Lie superalgebras,and determine the ir-reducible condition.This paper deals with the cases when the irreducible condition fails.We prove that if n-m-1>0 and c is an integer satisfying 1≤c≤n-m-1,the representation of osp(2n+2|2m)has a composition series of length 2,and when n-m-1≥0 and c∈-N,the representation of osp(2n+2|2m)has a composition series of length 3,where N is the set of nonnegative integers.Moreover,we show that if c∈(max{n-m,0}-1/2-N)U(-N),the representation of osp(2n+3|2m)has a composition series of length 2.In particular,we obtain an explicit presentation of the irreducible module with highest weight■λ_(2)-λ_(1),where l is any positive integer and it is not a generalized Verma module.展开更多
Pauli’s work on the dynamical symmetry of three-dimensional hydrogen atom is extended to the hydrogen atom in n-dimensional space(n≥2). It is shown that the n-dimensional hydrogen atom has SO(n+1) dynamical symmetry...Pauli’s work on the dynamical symmetry of three-dimensional hydrogen atom is extended to the hydrogen atom in n-dimensional space(n≥2). It is shown that the n-dimensional hydrogen atom has SO(n+1) dynamical symmetry. The expressions for the energy level and degeneracy arc given.展开更多
The oldest Goldbach’s Conjecture (“Every even positive integer strictly larger than 4 is the sum of two primes”) has remained unproven since 1742. The recent proof [1] connected Goldbach’s Conjecture with the fact...The oldest Goldbach’s Conjecture (“Every even positive integer strictly larger than 4 is the sum of two primes”) has remained unproven since 1742. The recent proof [1] connected Goldbach’s Conjecture with the fact that every positive composite integer n strictly larger than 3, is located at the middle of the distance between two primes. The present paper contains explicit additional and complementary details of the proof, insisting on the existence and the number of Goldbach’s representations of even positive integers as sums of pairs of primes.展开更多
Goldbach’s Conjecture (“Every even positive integer strictly larger than 4 is the sum of two primes”) has remained unproven since 1742. This paper contains the proof that every positive composite integer n strictly...Goldbach’s Conjecture (“Every even positive integer strictly larger than 4 is the sum of two primes”) has remained unproven since 1742. This paper contains the proof that every positive composite integer n strictly larger than 3, is located at the middle of the distance between two primes, which implicitly proves Goldbach’s Conjecture for 2n as well.展开更多
Factoring quadratics over Z is a staple of introductory algebra and textbooks tend to create the impression that doable factorizations are fairly common. To the contrary, if coefficients of a general quadratic are sel...Factoring quadratics over Z is a staple of introductory algebra and textbooks tend to create the impression that doable factorizations are fairly common. To the contrary, if coefficients of a general quadratic are selected randomly without restriction, the probability that a factorization exists is zero. We achieve a specific quantification of the probability of factoring quadratics by taking a new approach that considers the absolute size of coefficients to be a parameter n. This restriction allows us to make relative likelihood estimates based on finite sample spaces. Our probability estimates are then conditioned on the size parameter n and the behavior of the conditional estimates may be studied as the parameter is varied. Specifically, we enumerate how many formal factored expressions could possibly correspond to a quadratic for a given size parameter. The conditional probability of factorization as a function of n is just the ratio of this enumeration to the total number of possible quadratics consistent with n. This approach is patterned after the well-known case where factorizations are carried out over a finite field. We review the finite field method as background for our method of dealing with Z [x]. The monic case is developed independently of the general case because it is simpler and the resulting probability estimating formula is more accurate. We conclude with a comparison of our theoretical probability estimates with exact data generated by a computer search for factorable quadratics corresponding to various parameter values.展开更多
In 2006, Sanwong and Sullivan described the maximal congruences on the semigroup N consisting of all non-negative integers under standard multiplication, and on the semigroup T(X) consisting of all total transformat...In 2006, Sanwong and Sullivan described the maximal congruences on the semigroup N consisting of all non-negative integers under standard multiplication, and on the semigroup T(X) consisting of all total transformations of an infinite set X under composition. Here, we determine all maximal congruences on the semigroup Zn under multiplication modulo n. And, when Y lohtain in X, we do the same for the semigroup T(X, Y) consisting of all elements of T(X) whose range is contained in Y. We also characterise the minimal congruences on T(X. Y).展开更多
In this paper, we establish a quite general mean value result of arithmetic functions over short intervals with the Selberg-Delange method and give some applications. In particular, we generalize Selberg's result ...In this paper, we establish a quite general mean value result of arithmetic functions over short intervals with the Selberg-Delange method and give some applications. In particular, we generalize Selberg's result on the distribution of integers with a given number of prime factors and Deshouillers-Dress-Tenenbaum's arcsin law on divisors to the short interval case.展开更多
Recently the Mobius funtion and the Mobius inverse formula are widely used insolving some physical problems, such as the inverse blackbody radiation problem, theinversion of specific heat for phonon density of states ...Recently the Mobius funtion and the Mobius inverse formula are widely used insolving some physical problems, such as the inverse blackbody radiation problem, theinversion of specific heat for phonon density of states and the inverse problems ofFermi system and ionic crystals. In this note we obtain a general and simple ex-pression of interatomic pairwise potential from square lattice cohesive energy by usingthe Mobius function and the Mobius inverse formula on a unique factorization do-main.展开更多
In this paper we introduce a generalization of Bernstein polynomials based on q calculus. With the help of Bohman-Korovkin type theorem, we obtain A-statistical approximation properties of these operators. Also, by us...In this paper we introduce a generalization of Bernstein polynomials based on q calculus. With the help of Bohman-Korovkin type theorem, we obtain A-statistical approximation properties of these operators. Also, by using the Modulus of continuity and Lipschitz class, the statistical rate of convergence is established. We also gives the rate of A-statistical convergence by means of Peetre's type K-functional. At last, approximation properties of a rth order generalization of these operators is discussed.展开更多
Let a,b,c,d,e and f be integers with a≥ c≥ e> 0,b>-a and b≡a(mod 2),d>-c and d≡c(mod 2),f>-e and f≡e(mod 2).Suppose that b≥d if a=c,and d≥f if c=e.When b(a-b),d(c-d) and f(e-f) are not all zero,we p...Let a,b,c,d,e and f be integers with a≥ c≥ e> 0,b>-a and b≡a(mod 2),d>-c and d≡c(mod 2),f>-e and f≡e(mod 2).Suppose that b≥d if a=c,and d≥f if c=e.When b(a-b),d(c-d) and f(e-f) are not all zero,we prove that if each n∈N={0,1,2,...} can be written as x(ax+b)/2+y(cy+d)/2+z(ez+f)/2 with x,y,z∈N then the tuple(a,b,c,d,e,f) must be on our list of 473 candidates,and show that 56 of them meet our purpose.When b∈[0,a),d∈[0,c) and f∈[0,e),we investigate the universal tuples(a,b,c,d,e,f) over Z for which any n∈N can be written as x(ax+b)/2+y(cy+d)/2+z(ez+f)/2 with x,y,z∈Z,and show that there are totally 12,082 such candidates some of which are proved to be universal tuples over Z.For example,we show that any n∈N can be written as x(x+1)/2+y(3y+1)/2+z(5z+1)/2 with x,y,z∈Z,and conjecture that each n∈N can be written as x(x+1)/2+y(3y+1)/2+z(5z+1)/2 with x,y,z∈N.展开更多
文摘An elementary formula to know the number of primes in the interval (x, 2x) close to the exact figure for a fixed x is given here. A new elementary equation is derived (a relation between prime numbers and composite numbers distributed in the interval [1, 2x]). An elementary method to know the number of primes in a given magnitude is suitably placed in the form of a general formula, and we have proved it. The general formula is applied to the terms of the equation, and a tactical simplification of the terms gives rise to an expression whose verification envisages scope for its further studies.
文摘The application of the Euclidean division theorem for the positive integers allowed us to establish a set which contains all the prime numbers and this set we called it set of supposedly prime numbers and we noted it E<sub>sp</sub>. We subsequently established from the previous set the set of non-prime numbers (the set of numbers belonging to this set and which are not prime) denoted E<sub>np</sub>. We then extracted from the set of supposedly prime numbers the numbers which are not prime and the set of remaining number constitutes the set of prime numbers denoted E<sub>p</sub>. We have deduced from the previous set, the set of prime numbers between two natural numbers. We have explained during our demonstrations the origin of the twin prime numbers and the structure of the chain of prime numbers.
文摘We generalize the congruences of Friedmann-Tamarkine (1909), Lehmer (1938), and Ernvall-Metsänkyla (1991) on the sums of powers of integers weighted by powers of the Fermat quotients to the next Fermat quotient power, namely to the third power of the Fermat quotient. Using this result and the Gessel identity (2005) combined with our past work (2021), we are able to relate residues of some truncated convolutions of Bernoulli numbers with some Ernvall-Metsänkyla residues to residues of some full convolutions of the same kind. We also establish some congruences concerning other related weighted sums of powers of integers when these sums are weighted by some analogs of the Teichmüller characters.
文摘In block ciphers,the nonlinear components,also known as sub-stitution boxes(S-boxes),are used with the purpose of inducing confusion in cryptosystems.For the last decade,most of the work on designing S-boxes over the points of elliptic curves has been published.The main purpose of these studies is to hide data and improve the security levels of crypto algorithms.In this work,we design pair of nonlinear components of a block cipher over the residue class of Gaussian integers(GI).The fascinating features of this structure provide S-boxes pair at a time by fixing three parameters.But the prime field dependent on the Elliptic curve(EC)provides one S-box at a time by fixing three parameters a,b,and p.The newly designed pair of S-boxes are assessed by various tests like nonlinearity,bit independence criterion,strict avalanche criterion,linear approximation probability,and differential approximation probability.
基金extend their appreciation to the Deanship of Scientific Research at King Khalid University,for funding this work through the General Research Groups Program under Grant No.R.G.P.2/109/43.
文摘In block ciphers,the nonlinear components,also known as substitution boxes(S-boxes),are used with the purpose to induce confusion in cryptosystems.For the last decade,most of the work on designing S-boxes over the points of elliptic curves,chaotic maps,and Gaussian integers has been published.The main purpose of these studies is to hide data and improve the security levels of crypto algorithms.In this work,we design pair of nonlinear components of a block cipher over the residue class of Eisenstein integers(EI).The fascinating features of this structure provide S-boxes pair at a time by fixing three parameters.However,in the same way,by taking three fixed parameters only one S-box is obtained through a prime field-dependent Elliptic curve(EC),chaotic maps,and Gaussian integers.The newly designed pair of S-boxes are assessed by various tests like nonlinearity,bit independence criterion,strict avalanche criterion,linear approximation probability,and differential approximation probability.
文摘If Goldbach’s conjecture is true, then for each prime number p there is at least one pair of primes symmetric with respect to p and whose sum is 2p. In the multiplicative number theory, covering the positive integers with primes, during the prime factorization, may be viewed as being the outcome of a parallel system which functions properly if and only if Euler’s formula of the product of the reciprocals of the primes is true. An exact formula for the number of primes less than or equal to an arbitrary bound is given. This formula may be implemented using Wolfram’s computer package Mathematica.
文摘The distribution of twin prime numbers is discussed. The research method of corresponding prime number distribution is proposed. The distribution of prime numbers corresponding to integers and composite numbers is discussed. Through the corresponding prime distribution rate of integers and composite numbers, it is found that the corresponding prime distribution rate of composite numbers approaches the corresponding prime distribution rate of integers. The distribution principle of corresponding prime number of composite number is proved. The twin prime distribution theorem is obtained. The number of twin prime numbers is thus obtained. It provides a practical way to study the conjecture of twin prime numbers.
基金supported by National Natural Science Foundation of China(Grant No.11171140)the PAPD of Jiangsu Higher Education Institutions
文摘For m = 3, 4,..., the polygonal numbers of order m are given by pm(n) =(m- 2) n2 + n(n= 0, 1, 2,...). For positive integers a, b, c and i, j, k 3 with max{i, j, k} 5, we call the triple(api, bpj, cpk)universal if for any n = 0, 1, 2,..., there are nonnegative integers x, y, z such that n = api(x) + bpj(y)+ cpk(z). We show that there are only 95 candidates for universal triples(two of which are(p4, p5, p6) and(p3, p4, p27)), and conjecture that they are indeed universal triples. For many triples(api, bpj, cpk)(including(p3, 4p4, p5),(p4, p5, p6) and(p4, p4, p5)), we prove that any nonnegative integer can be written in the form api(x) + bpj(y) + cpk(z) with x, y, z ∈ Z. We also show some related new results on ternary quadratic forms,one of which states that any nonnegative integer n ≡ 1(mod 6) can be written in the form x2+ 3y2+ 24z2 with x, y, z ∈ Z. In addition, we pose several related conjectures one of which states that for any m = 3, 4,...each natural number can be expressed as pm+1(x1) + pm+2(x2) + pm+3(x3) + r with x1, x2, x3 ∈ {0, 1, 2,...}and r ∈ {0,..., m- 3}.
文摘In our earlier paper,we generalize the one-parameter(c)family of inhomoge-neous first-order differential operator representations of the orthogonal Lie algebras arising from conformal transformations to those of orthosymplectic Lie superalgebras,and determine the ir-reducible condition.This paper deals with the cases when the irreducible condition fails.We prove that if n-m-1>0 and c is an integer satisfying 1≤c≤n-m-1,the representation of osp(2n+2|2m)has a composition series of length 2,and when n-m-1≥0 and c∈-N,the representation of osp(2n+2|2m)has a composition series of length 3,where N is the set of nonnegative integers.Moreover,we show that if c∈(max{n-m,0}-1/2-N)U(-N),the representation of osp(2n+3|2m)has a composition series of length 2.In particular,we obtain an explicit presentation of the irreducible module with highest weight■λ_(2)-λ_(1),where l is any positive integer and it is not a generalized Verma module.
文摘Pauli’s work on the dynamical symmetry of three-dimensional hydrogen atom is extended to the hydrogen atom in n-dimensional space(n≥2). It is shown that the n-dimensional hydrogen atom has SO(n+1) dynamical symmetry. The expressions for the energy level and degeneracy arc given.
文摘The oldest Goldbach’s Conjecture (“Every even positive integer strictly larger than 4 is the sum of two primes”) has remained unproven since 1742. The recent proof [1] connected Goldbach’s Conjecture with the fact that every positive composite integer n strictly larger than 3, is located at the middle of the distance between two primes. The present paper contains explicit additional and complementary details of the proof, insisting on the existence and the number of Goldbach’s representations of even positive integers as sums of pairs of primes.
文摘Goldbach’s Conjecture (“Every even positive integer strictly larger than 4 is the sum of two primes”) has remained unproven since 1742. This paper contains the proof that every positive composite integer n strictly larger than 3, is located at the middle of the distance between two primes, which implicitly proves Goldbach’s Conjecture for 2n as well.
文摘Factoring quadratics over Z is a staple of introductory algebra and textbooks tend to create the impression that doable factorizations are fairly common. To the contrary, if coefficients of a general quadratic are selected randomly without restriction, the probability that a factorization exists is zero. We achieve a specific quantification of the probability of factoring quadratics by taking a new approach that considers the absolute size of coefficients to be a parameter n. This restriction allows us to make relative likelihood estimates based on finite sample spaces. Our probability estimates are then conditioned on the size parameter n and the behavior of the conditional estimates may be studied as the parameter is varied. Specifically, we enumerate how many formal factored expressions could possibly correspond to a quadratic for a given size parameter. The conditional probability of factorization as a function of n is just the ratio of this enumeration to the total number of possible quadratics consistent with n. This approach is patterned after the well-known case where factorizations are carried out over a finite field. We review the finite field method as background for our method of dealing with Z [x]. The monic case is developed independently of the general case because it is simpler and the resulting probability estimating formula is more accurate. We conclude with a comparison of our theoretical probability estimates with exact data generated by a computer search for factorable quadratics corresponding to various parameter values.
文摘In 2006, Sanwong and Sullivan described the maximal congruences on the semigroup N consisting of all non-negative integers under standard multiplication, and on the semigroup T(X) consisting of all total transformations of an infinite set X under composition. Here, we determine all maximal congruences on the semigroup Zn under multiplication modulo n. And, when Y lohtain in X, we do the same for the semigroup T(X, Y) consisting of all elements of T(X) whose range is contained in Y. We also characterise the minimal congruences on T(X. Y).
基金supported by National Natural Science Foundation of China (Grant Nos. 11671253, 11771252 and 11531008)the Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20120073110059)+1 种基金Program for Innovative Research Team in University of Ministry of Education of China (Grant No. IRT16R43)Taishan Scholars Project, the Program PRC 1457-AuForDiP (CNRS-NSFC)
文摘In this paper, we establish a quite general mean value result of arithmetic functions over short intervals with the Selberg-Delange method and give some applications. In particular, we generalize Selberg's result on the distribution of integers with a given number of prime factors and Deshouillers-Dress-Tenenbaum's arcsin law on divisors to the short interval case.
文摘Recently the Mobius funtion and the Mobius inverse formula are widely used insolving some physical problems, such as the inverse blackbody radiation problem, theinversion of specific heat for phonon density of states and the inverse problems ofFermi system and ionic crystals. In this note we obtain a general and simple ex-pression of interatomic pairwise potential from square lattice cohesive energy by usingthe Mobius function and the Mobius inverse formula on a unique factorization do-main.
文摘In this paper we introduce a generalization of Bernstein polynomials based on q calculus. With the help of Bohman-Korovkin type theorem, we obtain A-statistical approximation properties of these operators. Also, by using the Modulus of continuity and Lipschitz class, the statistical rate of convergence is established. We also gives the rate of A-statistical convergence by means of Peetre's type K-functional. At last, approximation properties of a rth order generalization of these operators is discussed.
基金supported by National Natural Science Foundation of China (Grant No. 11571162)the NSFC-RFBR Cooperation and Exchange Program (Grant No. 11811530072)
文摘Let a,b,c,d,e and f be integers with a≥ c≥ e> 0,b>-a and b≡a(mod 2),d>-c and d≡c(mod 2),f>-e and f≡e(mod 2).Suppose that b≥d if a=c,and d≥f if c=e.When b(a-b),d(c-d) and f(e-f) are not all zero,we prove that if each n∈N={0,1,2,...} can be written as x(ax+b)/2+y(cy+d)/2+z(ez+f)/2 with x,y,z∈N then the tuple(a,b,c,d,e,f) must be on our list of 473 candidates,and show that 56 of them meet our purpose.When b∈[0,a),d∈[0,c) and f∈[0,e),we investigate the universal tuples(a,b,c,d,e,f) over Z for which any n∈N can be written as x(ax+b)/2+y(cy+d)/2+z(ez+f)/2 with x,y,z∈Z,and show that there are totally 12,082 such candidates some of which are proved to be universal tuples over Z.For example,we show that any n∈N can be written as x(x+1)/2+y(3y+1)/2+z(5z+1)/2 with x,y,z∈Z,and conjecture that each n∈N can be written as x(x+1)/2+y(3y+1)/2+z(5z+1)/2 with x,y,z∈N.