不同初始孔隙比下非饱和土渗透系数的试验测量及预测,是进行非饱和土渗流分析及水-力耦合研究的基础,相关工作具有重要的意义。以湖南邵阳红黏土为例,利用千斤顶制备5种不同初始孔隙密度塑土样;采用压力板仪测量其土-水特征曲线;选用变...不同初始孔隙比下非饱和土渗透系数的试验测量及预测,是进行非饱和土渗流分析及水-力耦合研究的基础,相关工作具有重要的意义。以湖南邵阳红黏土为例,利用千斤顶制备5种不同初始孔隙密度塑土样;采用压力板仪测量其土-水特征曲线;选用变水头法测量其饱和渗透系数;自制有机玻璃桶试验装置,采用瞬态剖面法进行非饱和渗透试验,测量不同初始孔隙比土样的非饱和渗透系数。选用CCG(Childs和Collis-George)修正模型和陶-孔模型预测非饱和渗透系数,并与实测值进行比较,验证模型有效性。以上述试验及模型预测的成果为基础,研究初始孔隙比对非饱和(相对)渗透系数的影响规律。研究结果表明:湖南非饱和黏性土渗透系数随基质吸力增加而降低,在低基质吸力阶段(100 k Pa以内)变化较为剧烈,在高基质吸力阶段(100 kPa以上)变化较为缓慢;CCG模型预测误差较大,陶-孔模型预测值与实测值总体吻合较好;进气值之后,初始孔隙比对非饱和渗透系数的影响较小,对非饱和相对渗透系数的影响较大,相同基质吸力条件下初始孔隙比越小,相对渗透系数越大。展开更多
非饱和土渗透系数函数跨越多个数量级,传统的测量方法动辄耗时数月,且难以实现全吸力范围内渗透系数的测量。为了实现全吸力范围内渗透系数的快速测量,将湿润锋前进法与瞬时剖面法相结合(简称联合测定方法),利用自行研制的土柱入渗装置...非饱和土渗透系数函数跨越多个数量级,传统的测量方法动辄耗时数月,且难以实现全吸力范围内渗透系数的测量。为了实现全吸力范围内渗透系数的快速测量,将湿润锋前进法与瞬时剖面法相结合(简称联合测定方法),利用自行研制的土柱入渗装置,开展了不同干密度条件下青海粉质黏土全吸力范围内渗透系数测量试验。试验结果表明:在联合测定方法中,湿润锋前进法适用于高吸力段(基质吸力ψ> 25 k Pa)渗透系数的测量,瞬时剖面法则适用于低吸力段(基质吸力ψ≤25 k Pa)渗透系数的测量,且两种方法在吸力重叠范围内渗透系数测量结果基本一致。联合测定方法可将全吸力范围内渗透系数的测量时长压缩至一周左右,且精度良好。此外,还对两种试验方法的误差来源进行了分析与讨论。研究结果表明:联合测定方法能够实现全吸力范围内渗透系数的快速测量,有望使得非饱和土渗透系数的测量成为土力学的常规试验。展开更多
The main objective of this study was to determine the desiccation behavior of clay slurries. A clay slurry with high water adsorption capacity(W_L = 180%,W_P 60%,W_s = 20) was used to determine the soil water characte...The main objective of this study was to determine the desiccation behavior of clay slurries. A clay slurry with high water adsorption capacity(W_L = 180%,W_P 60%,W_s = 20) was used to determine the soil water characteristic curve(SWCC), shrinkage curve, and hydraulic conductivity. The last parameter was determined similar to the Instantaneous Profile Method using evaporation tests. Results indicated that the clay slurry had an air entry value(AEV) of 1000 kPa and a residual suction of 5000 kPa that occurred at the plastic limit and the shrinkage limit, respectively. The discrepancy between theoretical and measured shrinkage limit was due to the gradual increase in clay particle contact. Unlike soils, the saturated hydraulic conductivity varied by two orders of magnitude(4×10 ~10 m/s at 20 kPa to 3 x 10 ~12 m/s at AEV). The unsaturated k further decreased to 10 ~14 m/s at 6 x 10~4 kPa beyond which vapor flow took place.展开更多
文摘不同初始孔隙比下非饱和土渗透系数的试验测量及预测,是进行非饱和土渗流分析及水-力耦合研究的基础,相关工作具有重要的意义。以湖南邵阳红黏土为例,利用千斤顶制备5种不同初始孔隙密度塑土样;采用压力板仪测量其土-水特征曲线;选用变水头法测量其饱和渗透系数;自制有机玻璃桶试验装置,采用瞬态剖面法进行非饱和渗透试验,测量不同初始孔隙比土样的非饱和渗透系数。选用CCG(Childs和Collis-George)修正模型和陶-孔模型预测非饱和渗透系数,并与实测值进行比较,验证模型有效性。以上述试验及模型预测的成果为基础,研究初始孔隙比对非饱和(相对)渗透系数的影响规律。研究结果表明:湖南非饱和黏性土渗透系数随基质吸力增加而降低,在低基质吸力阶段(100 k Pa以内)变化较为剧烈,在高基质吸力阶段(100 kPa以上)变化较为缓慢;CCG模型预测误差较大,陶-孔模型预测值与实测值总体吻合较好;进气值之后,初始孔隙比对非饱和渗透系数的影响较小,对非饱和相对渗透系数的影响较大,相同基质吸力条件下初始孔隙比越小,相对渗透系数越大。
文摘非饱和土渗透系数函数跨越多个数量级,传统的测量方法动辄耗时数月,且难以实现全吸力范围内渗透系数的测量。为了实现全吸力范围内渗透系数的快速测量,将湿润锋前进法与瞬时剖面法相结合(简称联合测定方法),利用自行研制的土柱入渗装置,开展了不同干密度条件下青海粉质黏土全吸力范围内渗透系数测量试验。试验结果表明:在联合测定方法中,湿润锋前进法适用于高吸力段(基质吸力ψ> 25 k Pa)渗透系数的测量,瞬时剖面法则适用于低吸力段(基质吸力ψ≤25 k Pa)渗透系数的测量,且两种方法在吸力重叠范围内渗透系数测量结果基本一致。联合测定方法可将全吸力范围内渗透系数的测量时长压缩至一周左右,且精度良好。此外,还对两种试验方法的误差来源进行了分析与讨论。研究结果表明:联合测定方法能够实现全吸力范围内渗透系数的快速测量,有望使得非饱和土渗透系数的测量成为土力学的常规试验。
基金the Natural Sciences and Engineering Research Council of Canada for providing financial assistance
文摘The main objective of this study was to determine the desiccation behavior of clay slurries. A clay slurry with high water adsorption capacity(W_L = 180%,W_P 60%,W_s = 20) was used to determine the soil water characteristic curve(SWCC), shrinkage curve, and hydraulic conductivity. The last parameter was determined similar to the Instantaneous Profile Method using evaporation tests. Results indicated that the clay slurry had an air entry value(AEV) of 1000 kPa and a residual suction of 5000 kPa that occurred at the plastic limit and the shrinkage limit, respectively. The discrepancy between theoretical and measured shrinkage limit was due to the gradual increase in clay particle contact. Unlike soils, the saturated hydraulic conductivity varied by two orders of magnitude(4×10 ~10 m/s at 20 kPa to 3 x 10 ~12 m/s at AEV). The unsaturated k further decreased to 10 ~14 m/s at 6 x 10~4 kPa beyond which vapor flow took place.