In order to obtain the determining method of the installing angle and decrease the performance indices (cutting force and wearing rate) of the pick, the relationships among the installing angles (impact angle, inclina...In order to obtain the determining method of the installing angle and decrease the performance indices (cutting force and wearing rate) of the pick, the relationships among the installing angles (impact angle, inclination angle and the skew angle) were studied, and the static model of installing angles of the pick was built. The relationships among the impact angle, the tip angle of pick and the kinematics parameters of the pick were built, too. Moreover, the mechanic models of the maximum clearance angle and the wearing angle of the pick were set up. To research the relationships of the installing angles and the change law of the wearing angle along with the kinematics parameters, the simulation was done. In order to verify the correctness of the models, the cutting experiments were done by employing two picks with different pick tip angles. The results indicate that, the cutting force is the smallest when the direction of the resultant force of pick follows its axis, and the relationship derived among the installing angles should be satisfied. In addition, to decrease the cutting force and the wearing of the pick, the tip angle of pick should not be larger than the half of the difference between the minimum wearing angle and the impact angle of the pick, and the clearance angle must not be less than zero.展开更多
An original reinforced concrete(RC) column and four strengthened specimens, two with RC jackets and two with wing walls, were tested in this study. The original column specimen was designed to comply with older(pre-19...An original reinforced concrete(RC) column and four strengthened specimens, two with RC jackets and two with wing walls, were tested in this study. The original column specimen was designed to comply with older(pre-1999) design standards so that the usual detailing defi ciencies in existing school buildings in Taiwan could be simulated. Two different structural details were chosen to fabricate the full-scale specimens for each retrofi tting technique. The study confi rmed that either RC jacketing or the installation of wing walls with two different structural details can effectively improve the stiffness and strength of an existing column. RC jacketing shows a better improvement in energy dissipation and ductility when compared to the columns with wing walls installed. This is because the two RC jacketed columns experienced a fl exural failure, while a shear failure was found in the two columns with the wing walls installed, and thus led to a drastic decrease of the maximum lateral strengths and ductility. Since many factors may affect the installation of a post-installed anchor, it is better to use standard hooks to replace post-installed anchors in some specifi c points when using RC jacketing or installing wing walls.展开更多
基金Project(51005232) supported by the National Natural Science Foundation of ChinaProject(20100481176) supported by the China Postdoctoral Science Foundation+1 种基金Project(201104583) supported by the China Postdoctoral Special FundProject(1101106c) supported by Jiangsu Postdoctoral Foundation, China
文摘In order to obtain the determining method of the installing angle and decrease the performance indices (cutting force and wearing rate) of the pick, the relationships among the installing angles (impact angle, inclination angle and the skew angle) were studied, and the static model of installing angles of the pick was built. The relationships among the impact angle, the tip angle of pick and the kinematics parameters of the pick were built, too. Moreover, the mechanic models of the maximum clearance angle and the wearing angle of the pick were set up. To research the relationships of the installing angles and the change law of the wearing angle along with the kinematics parameters, the simulation was done. In order to verify the correctness of the models, the cutting experiments were done by employing two picks with different pick tip angles. The results indicate that, the cutting force is the smallest when the direction of the resultant force of pick follows its axis, and the relationship derived among the installing angles should be satisfied. In addition, to decrease the cutting force and the wearing of the pick, the tip angle of pick should not be larger than the half of the difference between the minimum wearing angle and the impact angle of the pick, and the clearance angle must not be less than zero.
基金the fi nancial support for this study from the Architecture and Building Research Institute,Chinese Taipei,under Grant No.099301070000G1005
文摘An original reinforced concrete(RC) column and four strengthened specimens, two with RC jackets and two with wing walls, were tested in this study. The original column specimen was designed to comply with older(pre-1999) design standards so that the usual detailing defi ciencies in existing school buildings in Taiwan could be simulated. Two different structural details were chosen to fabricate the full-scale specimens for each retrofi tting technique. The study confi rmed that either RC jacketing or the installation of wing walls with two different structural details can effectively improve the stiffness and strength of an existing column. RC jacketing shows a better improvement in energy dissipation and ductility when compared to the columns with wing walls installed. This is because the two RC jacketed columns experienced a fl exural failure, while a shear failure was found in the two columns with the wing walls installed, and thus led to a drastic decrease of the maximum lateral strengths and ductility. Since many factors may affect the installation of a post-installed anchor, it is better to use standard hooks to replace post-installed anchors in some specifi c points when using RC jacketing or installing wing walls.