The notions of decoupling zeros of positive discrete-time linear systems are introduced. The relationships between the decoupling zeros of standard and positive discrete-time linear systems are analyzed. It is shown t...The notions of decoupling zeros of positive discrete-time linear systems are introduced. The relationships between the decoupling zeros of standard and positive discrete-time linear systems are analyzed. It is shown that: 1) if the positive system has decoupling zeros then the corresponding standard system has also decoupling zeros, 2) the positive system may not have decoupling zeros when the corresponding standard system has decoupling zeros, 3) the positive and standard systems have the same decoupling zeros if the rank of reachability (observability) matrix is equal to the number of linearly independent monomial columns (rows) and some additional assumptions are satisfied.展开更多
提出一种dq坐标系下静止无功发生器的自抗扰解耦控制方法。首先针对静止无功发生器(static var generator,SVG)非线性、强耦合的特点,建立并设计基于自抗扰技术的多变量解耦控制系统。其次,为克服一般控制算法难以解决的高频振荡和滤波...提出一种dq坐标系下静止无功发生器的自抗扰解耦控制方法。首先针对静止无功发生器(static var generator,SVG)非线性、强耦合的特点,建立并设计基于自抗扰技术的多变量解耦控制系统。其次,为克服一般控制算法难以解决的高频振荡和滤波效果差的问题,设计最速控制综合函数作为跟踪微分器。另外设计自抗扰线性和非线性两种控制器,并与PI控制算法进行比较,通过Matlab仿真和样机实验,验证了所设计的基于非线性自抗扰技术的多变量解耦控制算法可实现SVG输出电流在dq轴下的解耦,使系统具有较快的动态响应和较强的鲁棒性及抗干扰性,尤其具有单参数调节和无超调的优良性能。展开更多
This paper addresses the robust input-output energy decoupling problem for uncertain singular systems in which all parameter matrices except E exist as time-varying uncertainties. By means of linear matrix inequalitie...This paper addresses the robust input-output energy decoupling problem for uncertain singular systems in which all parameter matrices except E exist as time-varying uncertainties. By means of linear matrix inequalities (LMIs), sufficient conditions are derived for the existence of linear state feedback and input transformation control laws, such that the resulting closed-loop uncertain singular system is generalized quadratically stable and the energy of every input controls mainly the energy of a corresponding output, and influences the energy of other outputs as weakly as possible. Keywords Uncertain singular systems - generalized quadratical stability - input-output energy decoupling - linear matrix inequality (LMI) Xin-Zhuang Dong graduated from the Institute of Information Engineering of People’s Liberation Army, China, in 1994. She received the M. S. degree from the Institute of Electronic Technology of People’s Liberation Army, in 1998 and the Ph.D. degree from Northeastern University, China, in 2004. She is currently a post-doctoral fellow at the Key Laboratory of Systems and Control, CAS.Her research interests include singular and nonlinear systems, especially the control of singular systems such as H ∞ control, passive control and dissipative control. Qing-Ling Zhang received the Ph.D. degree from Northeastern University, China, in 1995. He is currently a professor with the Institute of Systems Science, Northeastern University. His research interests include singular systems, fuzzy systems, decentralized control, and H 2/H ∞ control.展开更多
文摘The notions of decoupling zeros of positive discrete-time linear systems are introduced. The relationships between the decoupling zeros of standard and positive discrete-time linear systems are analyzed. It is shown that: 1) if the positive system has decoupling zeros then the corresponding standard system has also decoupling zeros, 2) the positive system may not have decoupling zeros when the corresponding standard system has decoupling zeros, 3) the positive and standard systems have the same decoupling zeros if the rank of reachability (observability) matrix is equal to the number of linearly independent monomial columns (rows) and some additional assumptions are satisfied.
文摘提出一种dq坐标系下静止无功发生器的自抗扰解耦控制方法。首先针对静止无功发生器(static var generator,SVG)非线性、强耦合的特点,建立并设计基于自抗扰技术的多变量解耦控制系统。其次,为克服一般控制算法难以解决的高频振荡和滤波效果差的问题,设计最速控制综合函数作为跟踪微分器。另外设计自抗扰线性和非线性两种控制器,并与PI控制算法进行比较,通过Matlab仿真和样机实验,验证了所设计的基于非线性自抗扰技术的多变量解耦控制算法可实现SVG输出电流在dq轴下的解耦,使系统具有较快的动态响应和较强的鲁棒性及抗干扰性,尤其具有单参数调节和无超调的优良性能。
文摘This paper addresses the robust input-output energy decoupling problem for uncertain singular systems in which all parameter matrices except E exist as time-varying uncertainties. By means of linear matrix inequalities (LMIs), sufficient conditions are derived for the existence of linear state feedback and input transformation control laws, such that the resulting closed-loop uncertain singular system is generalized quadratically stable and the energy of every input controls mainly the energy of a corresponding output, and influences the energy of other outputs as weakly as possible. Keywords Uncertain singular systems - generalized quadratical stability - input-output energy decoupling - linear matrix inequality (LMI) Xin-Zhuang Dong graduated from the Institute of Information Engineering of People’s Liberation Army, China, in 1994. She received the M. S. degree from the Institute of Electronic Technology of People’s Liberation Army, in 1998 and the Ph.D. degree from Northeastern University, China, in 2004. She is currently a post-doctoral fellow at the Key Laboratory of Systems and Control, CAS.Her research interests include singular and nonlinear systems, especially the control of singular systems such as H ∞ control, passive control and dissipative control. Qing-Ling Zhang received the Ph.D. degree from Northeastern University, China, in 1995. He is currently a professor with the Institute of Systems Science, Northeastern University. His research interests include singular systems, fuzzy systems, decentralized control, and H 2/H ∞ control.