期刊文献+
共找到72篇文章
< 1 2 4 >
每页显示 20 50 100
新的K-均值算法最佳聚类数确定方法 被引量:90
1
作者 周世兵 徐振源 唐旭清 《计算机工程与应用》 CSCD 北大核心 2010年第16期27-31,共5页
K-均值聚类算法是以确定的类数k和随机选定的初始聚类中心为前提对数据集进行聚类的。通常聚类数k事先无法确定,随机选定的初始聚类中心容易使聚类结果不稳定。提出了一种新的确定K-均值聚类算法的最佳聚类数方法,通过设定AP算法的参数,... K-均值聚类算法是以确定的类数k和随机选定的初始聚类中心为前提对数据集进行聚类的。通常聚类数k事先无法确定,随机选定的初始聚类中心容易使聚类结果不稳定。提出了一种新的确定K-均值聚类算法的最佳聚类数方法,通过设定AP算法的参数,将AP算法产生的聚类数作为聚类数搜索范围的上界kmax,并通过选择合适的有效性指标Silhouette指标,以及基于最大最小距离算法思想设定初始聚类中心,分析聚类效果,确定最佳聚类数。仿真实验和分析验证了以上算法方案的可行性。 展开更多
关键词 K-均值聚类 聚类数 聚类有效性指标 初始聚类中心
下载PDF
一种有效的K-means聚类中心初始化方法 被引量:86
2
作者 熊忠阳 陈若田 张玉芳 《计算机应用研究》 CSCD 北大核心 2011年第11期4188-4190,共3页
传统K-means算法由于随机选取初始聚类中心,使得聚类结果波动性大;已有的最大最小距离法选取初始聚类中心过于稠密,容易造成聚类冲突现象。针对以上问题,对最大最小距离法进行了改进,提出了最大距离积法。该方法在基于密度概念的基础上... 传统K-means算法由于随机选取初始聚类中心,使得聚类结果波动性大;已有的最大最小距离法选取初始聚类中心过于稠密,容易造成聚类冲突现象。针对以上问题,对最大最小距离法进行了改进,提出了最大距离积法。该方法在基于密度概念的基础上,选取到所有已初始化聚类中心距离乘积最大的高密度点作为当前聚类中心。理论分析与对比实验结果表明,此方法相对于传统K-means算法和最大最小距离法有更快的收敛速度、更高的准确率和更强的稳定性。 展开更多
关键词 K-均值算法 基于密度 初始聚类中心 最大最小距离 最大距离积
下载PDF
基于最优划分的K-Means初始聚类中心选取算法 被引量:61
3
作者 张健沛 杨悦 +1 位作者 杨静 张泽宝 《系统仿真学报》 CAS CSCD 北大核心 2009年第9期2586-2590,共5页
针对传统K-Means算法聚类过程中,聚类数目k值难以准确预设和随机选取初始聚类中心造成聚类精度及效率降低等问题,提出一种基于最优划分的K-Means初始聚类中心选取算法,该算法利用直方图方法将数据样本空间进行最优划分,依据数据样本自... 针对传统K-Means算法聚类过程中,聚类数目k值难以准确预设和随机选取初始聚类中心造成聚类精度及效率降低等问题,提出一种基于最优划分的K-Means初始聚类中心选取算法,该算法利用直方图方法将数据样本空间进行最优划分,依据数据样本自身分布特点确定K-Means算法的初始聚类中心,无需预设k值,减少了算法结果对参数的依赖,提高算法运算效率及准确率。实验结果表明,利用该算法改进的K-Means算法,运算时间明显减少,其聚类结果准确率以及算法效率均得到显著提高。 展开更多
关键词 K—Means算法 初始聚类中心 直方图 最优划分方法
下载PDF
K-means算法初始聚类中心选择的优化 被引量:49
4
作者 冯波 郝文宁 +1 位作者 陈刚 占栋辉 《计算机工程与应用》 CSCD 2013年第14期182-185,192,共5页
针对传统K-means算法对初始聚类中心敏感的问题,提出了基于数据样本分布情况的动态选取初始聚类中心的改进K-means算法。该算法根据数据点的距离构造最小生成树,并对最小生成树进行剪枝得到K个初始数据集合,得到初始的聚类中心。由此得... 针对传统K-means算法对初始聚类中心敏感的问题,提出了基于数据样本分布情况的动态选取初始聚类中心的改进K-means算法。该算法根据数据点的距离构造最小生成树,并对最小生成树进行剪枝得到K个初始数据集合,得到初始的聚类中心。由此得到的初始聚类中心非常地接近迭代聚类算法收敛的聚类中心。理论分析与实验表明,改进的K-means算法能改善算法的聚类性能,减少聚类的迭代次数,提高效率,并能得到稳定的聚类结果,取得较高的分类准确率。 展开更多
关键词 K—means算法 聚类 初始聚类中心 TDKM算法
下载PDF
基于聚类中心优化的k-means最佳聚类数确定方法 被引量:27
5
作者 贾瑞玉 宋建林 《微电子学与计算机》 CSCD 北大核心 2016年第5期62-66,71,共6页
k-means聚类算法是在确定的聚类数k下对数据集进行聚类,通常凭借先验规则假定一个k值,取值具有很大主观性;此外,k-means初始聚类中心的选择一般也是随机的,这使得k-means聚类经常出现聚类指标局部最优化,聚类结果不稳定.针对以上两个问... k-means聚类算法是在确定的聚类数k下对数据集进行聚类,通常凭借先验规则假定一个k值,取值具有很大主观性;此外,k-means初始聚类中心的选择一般也是随机的,这使得k-means聚类经常出现聚类指标局部最优化,聚类结果不稳定.针对以上两个问题,结合密度法改进了k-means初始聚类中心点的选择,并在此基础上提出了一种确定k-means最佳聚类数的方法.实验结果证明,该方法可以得到更好的聚类结果,具有更高的准确性、更好的稳定性以及更优的收敛性. 展开更多
关键词 K-MEANS聚类 初始聚类中心 样本密度 聚类数
下载PDF
K-Means算法的研究与改进 被引量:19
6
作者 周爱武 陈宝楼 王琰 《计算机技术与发展》 2012年第10期101-104,共4页
K-Means算法是一种基于划分方法的经典聚类算法,已经在很多领域得到广泛的应用。虽然该算法有很多优点,但其也存在自身的局限性,比如需要用户输入聚类簇个数,初始聚类中心是随机性选择的,算法容易陷入局部最优解,对孤立点比较敏感等。... K-Means算法是一种基于划分方法的经典聚类算法,已经在很多领域得到广泛的应用。虽然该算法有很多优点,但其也存在自身的局限性,比如需要用户输入聚类簇个数,初始聚类中心是随机性选择的,算法容易陷入局部最优解,对孤立点比较敏感等。文中首先应用统计学中的标准分数对样本进行孤立点分析,然后提出一种新的初始聚类中心确定策略。对改进的算法和原算法分别做实验进行比较,实验结果表明,改进的算法在准确率、收敛速度和稳定性方面都有很大的提高。 展开更多
关键词 K—Means算法 孤立点 初始聚类中心
下载PDF
基于改进K-means算法的RFAT客户细分研究 被引量:17
7
作者 刘芝怡 陈功 《南京理工大学学报》 EI CAS CSCD 北大核心 2014年第4期531-536,共6页
为了解决传统K-means算法对初始聚类中心敏感和聚类数目事先难以确定的问题,提出了一种改进的K-means算法。改进算法利用最大距离等分策略来选取初始聚类中心,并利用一种评价函数来自动确定聚类数,减少了算法结果对参数的依赖。将改进... 为了解决传统K-means算法对初始聚类中心敏感和聚类数目事先难以确定的问题,提出了一种改进的K-means算法。改进算法利用最大距离等分策略来选取初始聚类中心,并利用一种评价函数来自动确定聚类数,减少了算法结果对参数的依赖。将改进算法应用到某企业客户分类中时,为提高分类结果的表征性,提出了以客户最近购买时间(Recency)、购买频次(Frequency)、平均购买额(Average Monetary)和购买倾向(Trend)作为客户价值细分变量的RFAT(Recency,frequency,average monetary and trend)模型,对客户RFAT值进行了聚类分析,并提供了针对不同客户群的营销策略。实证研究表明,该文所提出的改进算法和模型可以有效地对企业客户进行分类,能充分反映客户的当前价值和增值潜能。 展开更多
关键词 客户分类 购买时间 购买频次 平均购买额 购买倾向 K-MEANS算法 初始聚类中心 聚类数
下载PDF
初始聚类中心优化选取的核C-均值聚类算法 被引量:14
8
作者 单凯晶 肖怀铁 《计算机仿真》 CSCD 北大核心 2009年第7期118-121,共4页
在通常的核C-均值聚类算法中,聚类结果对初始聚类中心敏感,随机选取初始聚类中心时,会使得迭代次数较多、分类结果不稳定。针对该问题提出一种优化选取初始聚类中心的算法。该方法采用一种改进的最大最小距离算法对原始空间中的数据进... 在通常的核C-均值聚类算法中,聚类结果对初始聚类中心敏感,随机选取初始聚类中心时,会使得迭代次数较多、分类结果不稳定。针对该问题提出一种优化选取初始聚类中心的算法。该方法采用一种改进的最大最小距离算法对原始空间中的数据进行粗分类,将粗分类结果中每类类心作为初始聚类中心,再运用核C-均值聚类算法进行分类。仿真实验结果表明方法能有效减少迭代次数,使分类结果更加稳定,分类识别率也有一定程度的提高。 展开更多
关键词 核函数 初始聚类中心 最大最小距离法
下载PDF
一种改进的K-means算法在异常检测中的应用 被引量:11
9
作者 陈庄 罗告成 《重庆理工大学学报(自然科学)》 CAS 2015年第5期66-70,共5页
为提高K-means聚类算法在异常检测中的效果,给出一种改进的K-means聚类算法。基于最大距离选取初始聚类中心,并引入信息熵计算各个属性的权重,用改进后的加权欧氏距离公式计算数据集中样本点间的距离。选取KDD CUP99数据集测试算法的性... 为提高K-means聚类算法在异常检测中的效果,给出一种改进的K-means聚类算法。基于最大距离选取初始聚类中心,并引入信息熵计算各个属性的权重,用改进后的加权欧氏距离公式计算数据集中样本点间的距离。选取KDD CUP99数据集测试算法的性能。实验结果表明,本算法有助于提高异常检测的检测率和降低误报率。 展开更多
关键词 异常检测 数据挖掘 K-mean聚类算法 初始聚类中心 加权欧式距离
下载PDF
基于密度期望和有效性指标的K-均值算法 被引量:10
10
作者 何云斌 肖宇鹏 +1 位作者 万静 李松 《计算机工程与应用》 CSCD 2013年第24期105-111,共7页
传统K-均值聚类算法虽然收敛速度快,但存在聚类数k无法预先确定,并且算法对初始中心点敏感的缺点。针对上述缺点,提出了基于密度期望和聚类有效性Silhouette指标的K-均值优化算法。给出了基于密度期望的初始中心点选取方案,将处于密度... 传统K-均值聚类算法虽然收敛速度快,但存在聚类数k无法预先确定,并且算法对初始中心点敏感的缺点。针对上述缺点,提出了基于密度期望和聚类有效性Silhouette指标的K-均值优化算法。给出了基于密度期望的初始中心点选取方案,将处于密度期望区间内相距最远的k个样本作为初始聚类中心。该方案可有效降低K-均值算法对初始中心点的依赖,从而获得较高的聚类质量。在此基础上,可进一步通过选择合适的聚类有效性指标Silhouette指标分析不同k值下的每次聚类结果,确定最佳聚类数,则可有效改善k值无法预先确定的缺点。实验及分析结果验证了所提出方案的可行性和有效性。 展开更多
关键词 K-均值聚类 初始聚类中心点 期望密度 k值优化
下载PDF
改进的K-均值聚类算法 被引量:6
11
作者 周文勇 《光盘技术》 2007年第2期54-56,共3页
在分析聚类结果对初值依赖性的基础上,对初值选取方法进行了分析和研究,提出了K-均值聚类算法中寻找初始聚类中心的新方法。该算法首先计算出样本间的距离,然后根据样本点之间的距离寻找出有可能是一类的数据,最后依赖这些样本点形成初... 在分析聚类结果对初值依赖性的基础上,对初值选取方法进行了分析和研究,提出了K-均值聚类算法中寻找初始聚类中心的新方法。该算法首先计算出样本间的距离,然后根据样本点之间的距离寻找出有可能是一类的数据,最后依赖这些样本点形成初始聚类中心。 展开更多
关键词 聚类 数据挖掘 K-均值算法 初始聚类中心
下载PDF
K-means聚类中心的鲁棒优化算法 被引量:7
12
作者 罗倩 《计算机工程与设计》 北大核心 2015年第9期2395-2400,共6页
针对K-means算法对随机选择的初始聚类中心敏感且聚类结果不稳定、准确率不高的问题,提出一种基于邻域数据距离加权的聚类中心鲁棒优化算法。通过建立数据密度约束将聚类中心优化在数据密集区域,有效克服K-means算法聚类结果稳定性差等... 针对K-means算法对随机选择的初始聚类中心敏感且聚类结果不稳定、准确率不高的问题,提出一种基于邻域数据距离加权的聚类中心鲁棒优化算法。通过建立数据密度约束将聚类中心优化在数据密集区域,有效克服K-means算法聚类结果稳定性差等问题。通过对仿真数据和标准数据集的实验,验证了采用该算法收敛的聚类中心非常接近标准数据集的实际中心,具有较优的聚类准确性、鲁棒性和收敛速度。 展开更多
关键词 K-MEANS聚类算法 初始聚类中心 邻域距离加权 聚类优化 鲁棒算法
下载PDF
一种改进的k-means初始聚类中心选择方法 被引量:6
13
作者 安爱芬 《山西师范大学学报(自然科学版)》 2013年第1期30-34,共5页
针对传统k-means聚类方法随机选择初始聚类中心而导致的收敛速度慢、聚类效果较差的问题,本文结合空间相似度度量提出一种改进的k-means初始聚类中心选择方法.该方法通过定义空间中样本的相似度,从而选择相似度较小的样本作为初始聚类中... 针对传统k-means聚类方法随机选择初始聚类中心而导致的收敛速度慢、聚类效果较差的问题,本文结合空间相似度度量提出一种改进的k-means初始聚类中心选择方法.该方法通过定义空间中样本的相似度,从而选择相似度较小的样本作为初始聚类中心,以减少达到聚类稳定状态的迭代次数,提高聚类的效率.UCI数据集上的实验结果表明,与传统k-means聚类方法相比,本文提出的改进的k-means初始聚类中心选择方法能够使聚类的收敛速度加快,得到良好的聚类效果. 展开更多
关键词 K-MEANS聚类 初始聚类中心 相似度 收敛速度
下载PDF
一种改进的势函数欠定盲源分离算法 被引量:6
14
作者 付卫红 王璐 马丽芬 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2014年第6期1-5,88,共6页
针对原有的拉普拉斯混合模型势函数法复杂度高、随机选取部分观测数据点作为初始聚类中心的算法聚类结果不稳定、准确率低的问题,提出了一种改进的势函数欠定盲源分离算法.该算法在基于密度概念的基础上,以簇内距离小、簇间距离大为原则... 针对原有的拉普拉斯混合模型势函数法复杂度高、随机选取部分观测数据点作为初始聚类中心的算法聚类结果不稳定、准确率低的问题,提出了一种改进的势函数欠定盲源分离算法.该算法在基于密度概念的基础上,以簇内距离小、簇间距离大为原则,选取部分高密度点作为势函数的初始聚类中心.理论分析与仿真实验表明,改进算法的复杂度大大降低,而估计准确度降低很少.在信噪比为10dB时,该算法仿真时间降为原始势函数法的5%;相对随机选取算法,在计算复杂度基本一致的前提下,该算法的估计准确度大大提高,源信号个数估计准确率由61%提高到85%,混合矩阵估计误差由0.47下降为0.27. 展开更多
关键词 欠定盲源分离 混合矩阵估计 势函数法 密度法 初始聚类中心
下载PDF
基于划分的聚类个数与初始中心的确定方法 被引量:4
15
作者 征原 谢云 《计算机技术与发展》 2017年第7期76-78,82,共4页
k均值聚类算法在对数据进行聚类时需要以确定的聚类个数和初始聚类中心为前提,但聚类个数是难以准确给定的,通常随机选取k个样本作为初始聚类中心,由于不同的初始聚类中心可能导致不同的聚类结果,采用随机选取初始聚类中心的方法存在着... k均值聚类算法在对数据进行聚类时需要以确定的聚类个数和初始聚类中心为前提,但聚类个数是难以准确给定的,通常随机选取k个样本作为初始聚类中心,由于不同的初始聚类中心可能导致不同的聚类结果,采用随机选取初始聚类中心的方法存在着较大的盲目性,造成聚类结果极不稳定。为此,提出了一种基于划分的聚类个数与初始中心点的确定方法。该方法通过对数据空间进行划分,统计每个网格空间中数据点数目作为网格的数据密度,同时计算局部密度极大值的网格个数;按照不同的分度值对数据集进行划分,当局部密度极大值的网格个数趋于相对稳定时,将局部密度极大值的网格个数作为聚类个数,并同时获得聚类初始中心。基于机器学习数据库数据集以及随机生成的人工模拟数据集进行了仿真实验,实验结果表明,所提出的算法有效可行,具有较高的准确性。 展开更多
关键词 K均值聚类 聚类个数 初始聚类中心 划分
下载PDF
基于学术文献同被引分析的K-means算法改进研究 被引量:4
16
作者 吴夙慧 成颖 +1 位作者 郑彦宁 潘云涛 《情报学报》 CSSCI 北大核心 2012年第1期82-94,共13页
K—means算法是一种应用广泛的聚类算法,但是存在初始聚类中心和K值选取的难题。本文提出了一种基于学术文献同被引分析的初始聚类中心和K值选取的K—means改进算法。该算法属于两步聚类算法,首先对学术文献进行同被引分析,得到同被... K—means算法是一种应用广泛的聚类算法,但是存在初始聚类中心和K值选取的难题。本文提出了一种基于学术文献同被引分析的初始聚类中心和K值选取的K—means改进算法。该算法属于两步聚类算法,首先对学术文献进行同被引分析,得到同被引矩阵,然后基于同被引矩阵进行层次聚类。算法记录每次迭代过程中被聚为一类的学术文献间的距离以及两次迭代间的距离差,当两次迭代的距离差取得最大值时取其聚类数作为第二步K-means算法的K值,并且将此时的类中心作为第二步K—means算法的初始聚类中心。第二步聚类则依据文献内容实现K-means算法。实验通过与经典K—means算法和基于凝聚层次聚类算法的改进K—means算法的对比,证明了本文提出的改进的K—means算法具备更优的聚类效果。 展开更多
关键词 K—means算法 K值 初始聚类中心 同被引 文献聚类
下载PDF
基于加权特征的无监督模糊聚类入侵检测研究 被引量:3
17
作者 周铁军 李新宇 《湘潭大学自然科学学报》 CAS CSCD 北大核心 2011年第1期98-102,共5页
鉴于网络入侵检测数据样本特征属性的异构性及贡献率不同,提出一种加权特征的异构数据相似性度量法来反应网络数据样本间的相似程度.针对基于模糊C-均值聚类的网络入侵检测算法聚类数目难以确定的问题,提出了一种自动确定最佳聚类数的... 鉴于网络入侵检测数据样本特征属性的异构性及贡献率不同,提出一种加权特征的异构数据相似性度量法来反应网络数据样本间的相似程度.针对基于模糊C-均值聚类的网络入侵检测算法聚类数目难以确定的问题,提出了一种自动确定最佳聚类数的无监督模糊聚类入侵检测算法.通过KDDcup1999数据集的仿真对比实验,结果表明本文算法能找到最佳聚类数,并有效提高了聚类入侵检测的检测度. 展开更多
关键词 入侵检测 模糊C-均值聚类 相似性测度 初始聚类中心 聚类数
下载PDF
一种改进的动态K-means聚类算法 被引量:2
18
作者 詹辉煌 朱敏琛 《微型机与应用》 2012年第20期74-76,共3页
针对初始聚类中心对传统K-means算法的聚类结果有较大影响的问题,提出一种依据样本点类内距离动态调整中心点类间距离的初始聚类中心选取方法,由此得到的初始聚类中心点尽可能分散且具代表性,能有效避免K-means算法陷入局部最优。通过UC... 针对初始聚类中心对传统K-means算法的聚类结果有较大影响的问题,提出一种依据样本点类内距离动态调整中心点类间距离的初始聚类中心选取方法,由此得到的初始聚类中心点尽可能分散且具代表性,能有效避免K-means算法陷入局部最优。通过UCI数据集上的数据对改进算法进行实验,结果表明改进的算法提高了聚类的准确性。 展开更多
关键词 K-MEANS 聚类算法 初始聚类中心 动态聚类
下载PDF
双中心组合迭代抑制式模糊C-均值聚类图像分割算法 被引量:2
19
作者 兰蓉 赵强 《控制与决策》 EI CSCD 北大核心 2020年第10期2345-2362,共18页
针对抑制式模糊C-均值聚类算法应用于灰度图像分割时出现收敛速度较慢和像素误判的问题,通过挖掘图像同质区域内像素间的相关性与分析像素位置对类别判定的影响,提出一种双中心组合迭代抑制式模糊C-均值聚类图像分割算法.首先在图像上... 针对抑制式模糊C-均值聚类算法应用于灰度图像分割时出现收敛速度较慢和像素误判的问题,通过挖掘图像同质区域内像素间的相关性与分析像素位置对类别判定的影响,提出一种双中心组合迭代抑制式模糊C-均值聚类图像分割算法.首先在图像上经选点、扩展、提取等环节优选出较好的初始聚类中心;然后按该中心分别查找图像中灰度值与其相等的像素位置并遴选产生隐藏中心;其次采用负指数函数对像素位置与隐藏中心之间的欧氏距离进行归一化,得到位置特征;接着在对该特征赋权后直接修正模糊划分矩阵;最后结合抑制式思想进一步减少算法的迭代次数.与现有的多种相关算法进行对比,实验结果表明,所提出算法在获得致密且分离性较好聚类的同时,能够改善图像分割的准确率和执行效率. 展开更多
关键词 抑制式模糊C-均值聚类 图像分割 双中心组合迭代 初始聚类中心 隐藏中心
原文传递
基于特征加权K-means聚类的多模型软测量建模 被引量:3
20
作者 董陶 杨慧中 《计算机与应用化学》 CAS CSCD 北大核心 2013年第4期361-364,共4页
针对传统K-means聚类算法的聚类结果易随不同的初始聚类中心波动的问题,采用最大距离积法优化K-means聚类算法的初始聚类中心。传统的K-means聚类算法都假定样本的各维特征对聚类的贡献相同,影响了聚类效果和模型估计精度。为了考虑样... 针对传统K-means聚类算法的聚类结果易随不同的初始聚类中心波动的问题,采用最大距离积法优化K-means聚类算法的初始聚类中心。传统的K-means聚类算法都假定样本的各维特征对聚类的贡献相同,影响了聚类效果和模型估计精度。为了考虑样本各维特征对聚类的不同影响,利用一种新型的特征加权K-means聚类算法逐步调整特征权值,最终有效改善了聚类效果。利用本文方法建立组合支持向量机模型,将其用于双酚A生产过程质量指标的软测量建模中,仿真结果表明该算法能够有效改进数据的分类效果并提高软测量模型的估计精度。 展开更多
关键词 K-MEANS聚类算法 初始聚类中心 特征权值 组合支持向量机
原文传递
上一页 1 2 4 下一页 到第
使用帮助 返回顶部